Integral

Calculus Level 4

0 1 1 1 + 2 x + 2 x d x \large \int_0^1 \dfrac1{1 + 2^x + 2^{-x}} \, dx

Find the value of the closed form of the above integral to 4 significant figures.


The answer is 0.3167.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zach Abueg
Sep 15, 2017

I = 0 1 1 2 x + 1 + 2 x d x = 0 1 2 x 2 2 x + 2 x + 1 d x Let u = 2 x d x = 1 2 x ln x d u = 1 ln 2 1 2 1 u 2 + u + 1 d x = 1 ln 2 1 2 1 ( u + 1 2 ) 2 + 3 4 d x = 1 ln 2 2 3 tan 1 ( 2 u + 1 3 ) 1 2 = 2 π 3 3 2 ln 2 2 tan 1 ( 2 3 ) 3 ln 2 0.3167 \displaystyle \begin{aligned} I & = \int_0^1 \frac{1}{2^x + 1 + 2^{-x}} \ dx \\ & = \int_0^1 \frac{2^x}{2^{2x} + 2^x + 1} \ dx & \small \color{#3D99F6} \text{Let } u = 2^x \implies dx = \frac{1}{2^x \ln x} \ du \\ & = \frac{1}{\ln 2} \int_1^2 \frac{1}{u^2 + u + 1} \ dx \\ & = \frac{1}{\ln 2} \int_1^2 \frac{1}{\left(u + \frac 12\right)^2 + \frac 34} \ dx \\ & = \frac{1}{\ln 2} \cdot \frac{2}{\sqrt{3}} \tan ^{-1} \left( \frac{2u + 1}{\sqrt{3}} \right) \left. \right|_1^2 \\ & = \frac{2\pi}{3^{\frac 32} \ln 2} - \frac{2\tan ^{-1} \left(\frac{2}{\sqrt{3}}\right)}{\sqrt{3}\ln 2} \\ & \approx \boxed{0.3167} \end{aligned}

Guilherme Niedu
Sep 15, 2017

I = 0 1 1 1 + 2 x + 2 x d x \large \displaystyle I = \int_{0}^{1} \frac{1}{1 + 2^{x} + 2^{-x}} dx

u = 2 x d u = 2 x ln ( 2 ) d x d x = 1 u ln ( 2 ) \large \displaystyle \color{#20A900} u = 2^x \rightarrow du = 2^x \ln(2) dx \rightarrow dx = \frac{1}{u\ln(2)}

I = 1 ln ( 2 ) 1 2 1 1 + u + u 1 1 u d u \large \displaystyle I = \frac{1}{\ln(2)} \int_{1}^{2} \frac{1}{1 + u + u^{-1}} \frac{1}{u} du

I = 1 ln ( 2 ) 1 2 1 u 2 + u + 1 d u \large \displaystyle I = \frac{1}{\ln(2)} \int_{1}^{2} \frac{1}{u^2 + u + 1} du

I = 1 ln ( 2 ) 1 2 1 ( u + 0.5 ) 2 + 0.75 d u \large \displaystyle I = \frac{1}{\ln(2)} \int_{1}^{2} \frac{1}{(u+0.5)^2 + 0.75} du

v = u + 0.5 d v = d u \large \displaystyle \color{#20A900} v = u + 0.5 \rightarrow dv = du

I = 1 ln ( 2 ) 1.5 2.5 1 v 2 + 0.75 d v \large \displaystyle I = \frac{1}{\ln(2)} \int_{1.5}^{2.5} \frac{1}{v^2 + 0.75} dv

I = 1 0.75 ln ( 2 ) 1.5 2.5 1 ( v 0.75 ) 2 + 1 d v \large \displaystyle I = \frac{1}{0.75 \ln(2)} \int_{1.5}^{2.5} \frac{1}{\left ( \frac{v}{\sqrt{0.75}} \right )^2 + 1} dv

I = 1 0.75 ln ( 2 ) 0.75 [ tan 1 ( v 0.75 ) ] 1.5 2.5 \large \displaystyle I = \frac{1}{0.75 \ln(2)} \sqrt{0.75} \left [ \tan^{-1} \left (\frac{v}{\sqrt{0.75}} \right ) \right ] _{1.5}^{2.5}

I = 1 0.75 ln ( 2 ) [ tan 1 ( 5 3 ) tan 1 ( 3 3 ) ] \large \displaystyle I = \frac{1}{\sqrt{0.75} \ln(2)} \left [ \tan^{-1} \left ( \frac{5}{\sqrt{3}} \right ) - \tan^{-1} \left ( \frac{3}{\sqrt{3}} \right ) \right ]

I 0.3167 \color{#3D99F6} \boxed{ \large \displaystyle I \approx 0.3167}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...