Integral

Calculus Level 4

Calculate 1 sin 1 sin 2 ( 2 x ) 2 x d x . \dfrac1{\sin1} \int_{-\infty}^\infty \dfrac{\sin^2 (2^x)}{2^x} \, dx.

Bonus Question: Prove that j = 0 x cos ( 2 j ) = sin ( 2 x ) 2 x \displaystyle\prod_{j=0}^x \cos(2^j) = \dfrac{\sin(2^x)}{2^x} .

3 π 2 sin ( 1 ) ln ( 2 ) \frac{3\pi}{2\sin(1)\ln(2)} 2 π sin ( 1 ) ln ( 2 ) \frac{2\pi}{\sin(1)\ln(2)} π sin ( 1 ) ln ( 2 ) \frac{\pi}{\sin(1)\ln(2)} π 2 sin ( 1 ) ln ( 2 ) \frac{\pi}{2\sin(1)\ln(2)}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

First let us substitute 2 x = t 2^{x} = t

So the integral becomes:-

1 sin ( 1 ) ln ( 2 ) 0 sin 2 ( t ) t 2 d t \large \frac{1}{\sin(1)\ln(2)} \int_{0}^{\infty} \frac{\sin^{2}(t)}{t^{2}} dt

= 1 2 sin ( 1 ) ln ( 2 ) 0 1 cos ( 2 t ) t 2 d t \large = \frac{1}{2\sin(1)\ln(2)} \int_{0}^{\infty} \frac{1-\cos(2t)}{t^{2}} dt

Let I ( a ) = 1 2 sin ( 1 ) ln ( 2 ) 0 1 cos ( a t ) t 2 d t \large I(a) = \frac{1}{2\sin(1)\ln(2)} \int_{0}^{\infty} \frac{1-\cos(at)}{t^{2}} dt

So I ( a ) = 1 2 sin ( 1 ) ln ( 2 ) 0 t sin ( a t ) t 2 d t \large I'(a) = \frac{1}{2\sin(1)\ln(2)} \int_{0}^{\infty} \frac{t\sin(at)}{t^{2}} dt

I ( a ) = 1 2 sin ( 1 ) ln ( 2 ) 0 sin ( a t ) t d t \large I'(a) = \frac{1}{2\sin(1)\ln(2)} \int_{0}^{\infty} \frac{\sin(at)}{t} dt

again using a substitution of a t = z at = z

We have:- I ( a ) = 1 2 sin ( 1 ) ln ( 2 ) 0 sin ( z ) z d z \large I'(a) = \frac{1}{2\sin(1)\ln(2)} \int_{0}^{\infty} \frac{\sin(z)}{z} dz

We know 0 sin ( x ) x d x \large \int_{0}^{\infty} \frac{\sin(x)}{x} dx is the Dirichlet Integral and it's value is π 2 \frac{\pi}{2}

So we have I ( a ) = 1 2 sin ( 1 ) ln ( 2 ) π 2 \large I'(a) = \frac{1}{2\sin(1)\ln(2)}\frac{\pi}{2}

So I ( a ) = 1 2 sin ( 1 ) ln ( 2 ) ( a π 2 + C ) \large I(a) = \frac{1}{2\sin(1)\ln(2)}(\frac{a\pi}{2} + C)

We have I ( 0 ) = 0 I(0) = 0

So C = 0 C=0

So we have I ( a ) = 1 2 sin ( 1 ) ln ( 2 ) ( a π 2 ) \large I(a) = \frac{1}{2\sin(1)\ln(2)}(\frac{a\pi}{2})

So I ( 2 ) = 1 sin ( 1 ) ln ( 2 ) ( π 2 ) \large I(2) = \frac{1}{\sin(1)\ln(2)}(\frac{\pi}{2})

Which is our required answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...