Calculate sin 1 1 ∫ − ∞ ∞ 2 x sin 2 ( 2 x ) d x .
Bonus Question: Prove that j = 0 ∏ x cos ( 2 j ) = 2 x sin ( 2 x ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
First let us substitute 2 x = t
So the integral becomes:-
sin ( 1 ) ln ( 2 ) 1 ∫ 0 ∞ t 2 sin 2 ( t ) d t
= 2 sin ( 1 ) ln ( 2 ) 1 ∫ 0 ∞ t 2 1 − cos ( 2 t ) d t
Let I ( a ) = 2 sin ( 1 ) ln ( 2 ) 1 ∫ 0 ∞ t 2 1 − cos ( a t ) d t
So I ′ ( a ) = 2 sin ( 1 ) ln ( 2 ) 1 ∫ 0 ∞ t 2 t sin ( a t ) d t
I ′ ( a ) = 2 sin ( 1 ) ln ( 2 ) 1 ∫ 0 ∞ t sin ( a t ) d t
again using a substitution of a t = z
We have:- I ′ ( a ) = 2 sin ( 1 ) ln ( 2 ) 1 ∫ 0 ∞ z sin ( z ) d z
We know ∫ 0 ∞ x sin ( x ) d x is the Dirichlet Integral and it's value is 2 π
So we have I ′ ( a ) = 2 sin ( 1 ) ln ( 2 ) 1 2 π
So I ( a ) = 2 sin ( 1 ) ln ( 2 ) 1 ( 2 a π + C )
We have I ( 0 ) = 0
So C = 0
So we have I ( a ) = 2 sin ( 1 ) ln ( 2 ) 1 ( 2 a π )
So I ( 2 ) = sin ( 1 ) ln ( 2 ) 1 ( 2 π )
Which is our required answer.