Integral

Calculus Level 5

0 1 ln ( x + 1 x 2 ) x d x = π A B \int_0^1\frac{\ln(x+\sqrt{1-x^2})}x\,\mathrm dx=\frac{\pi^A}B

The equation above holds true for positive integers A A and B B . Find A + B A+B .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ritabrata Roy
Apr 10, 2021

I didn't get how you integrated whole dz term.

Devil Devil - 1 month, 3 weeks ago

For alternative approaches, also see this .

Vilakshan Gupta - 1 month, 2 weeks ago
Naren Bhandari
Apr 14, 2021

We substitute x = cos y x=\cos y , then we have 0 π 2 ln ( x + 1 x 2 ) x d x = 0 π 2 ln ( cos y + sin y ) cos y sin y d y \int_0^{\frac{\pi}{2}}\frac{\ln\left(x+\sqrt{1-x^2}\right)}{x}dx=\int_0^{\frac{\pi}{2}}\frac{\ln\left(\cos y+\sin y\right)}{\cos y}\sin ydy make the change of variable y π 2 y y\mapsto \frac{\pi}{2} -y and hence of adding the obtained integral with latter integral, we get 0 π 2 ln ( cos y + sin y ) cos y sin y d y = see Roy’s solution 1 2 0 π 2 ln ( 1 + sin y ) sin y d y \int_0^{\frac{\pi}{2}}\frac{\ln\left(\cos y+\sin y\right)}{\cos y}\sin ydy\overset{\text{see Roy's solution}}{=}\frac{1}{2}\int_0^{\frac{\pi}{2}}\frac{\ln\left(1+\sin y\right)}{\sin y}dy Now substitute y = 2 arctan ( u ) y=2\arctan(u) and few simplification gives us 1 2 0 π 2 ln ( 1 + sin y ) sin y d y = 0 1 [ 2 ln ( 1 + u ) ln ( 1 + u 2 ) 2 u ] d u = 1 2 ( 2 Li 2 ( 1 ) + Li 2 ( 1 ) 2 ) = π 2 12 + π 2 48 = π 2 16 \frac{1}{2}\int_0^{\frac{\pi}{2}}\frac{\ln(1+\sin y)}{\sin y}dy=\int_0^1\left[\frac{2\ln(1+u)-\ln(1+u^2)}{2u}\right]du\\ = \frac{1}{2}\left(-2\operatorname{Li}_2(-1)+\frac{\operatorname{Li}_2(-1)}{2}\right)=-\frac{\pi^2}{12}+\frac{\pi^2}{48}=\frac{\pi^2}{16} where Li 2 ( x ) \operatorname{Li}_2(x) is dilogarithm function and resultant primitives of last two integrals are due to definition of it.

To see alternative approach to this problem click here .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...