Integral 2

Calculus Level 4

0 π / 2 d θ ( cos 3 θ + sin 3 θ ) 2 / 3 = a π 2 / b Γ 3 ( c / d ) \large \int_{0}^{\pi/2}\frac{d\theta}{{(\cos^3{\theta}+\sin^3{\theta})}^{2/3}} = \frac{a\pi^2/b}{\Gamma^3{(c/d)}}

The equation above holds true for positive integers a a , b b , c c , and d d , where gcd ( a , b ) = gcd ( c , d ) = 1 \gcd(a,b)=\gcd(c,d)= 1 and c c is minimized. Find 1000 a + 100 b + 10 c + d 1000a+100b+10c+d .

Notation: Γ ( ) \Gamma (\cdot) denotes the gamma function .


The answer is 4923.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anton Wu
Sep 3, 2017

Let the given integral be I I . Make a substitution ( x = tan 3 θ x=\tan^3{\theta} , d x = 3 tan 2 θ sec 2 θ d θ dx=3\tan^2{\theta}\sec^2{\theta}\,d\theta ) as follows: I = 0 π / 2 ( d θ ( cos 3 θ + sin 3 θ ) 2 / 3 ) = 0 π / 2 ( d θ ( cos 3 θ ( 1 + tan 3 θ ) ) 2 / 3 ) = 0 π / 2 ( sec 2 θ ( 1 + tan 3 θ ) 2 / 3 d θ ) = 1 3 0 π / 2 ( 3 tan 2 θ sec 2 θ ( tan 3 θ ( 1 + tan 3 θ ) ) 2 / 3 d θ ) = 1 3 0 ( d x ( x ( 1 + x ) ) 2 / 3 ) \begin{aligned} I &=\int_{0}^{\pi/2}{\left(\frac{d\theta}{{\left(\cos^3{\theta}+\sin^3{\theta}\right)}^{2/3}}\right)} \\ &=\int_{0}^{\pi/2}{\left(\frac{d\theta}{{\left(\cos^3{\theta}\cdot\left(1+\tan^3{\theta}\right)\right)}^{2/3}}\right)} \\ &=\int_{0}^{\pi/2}{\left(\frac{\sec^2{\theta}}{{\left(1+\tan^3{\theta}\right)}^{2/3}}\,d\theta\right)} \\ &=\frac{1}{3}\int_{0}^{\pi/2}{\left(\frac{3\tan^2{\theta}\sec^2{\theta}}{{\left(\tan^3{\theta}\cdot\left(1+\tan^3{\theta}\right)\right)}^{2/3}}\,d\theta\right)} \\ &=\frac{1}{3}\int_{0}^{\infty}{\left(\frac{dx}{{\left(x\left(1+x\right)\right)}^{2/3}}\right)} \end{aligned} Now make the substitution ( x = u 1 u x=\frac{u}{1-u} , d x = d u ( 1 u ) 2 dx=\frac{du}{{\left(1-u\right)}^2} ): I = 1 3 0 ( d x ( x ( 1 + x ) ) 2 / 3 ) = 1 3 0 1 ( d u ( 1 u ) 2 ( ( u 1 u ) ( 1 + ( u 1 u ) ) ) 2 / 3 ) = 1 3 0 1 ( d u ( u ( 1 u ) ) 2 / 3 ) = 1 3 0 1 ( u 2 / 3 ( 1 u ) 2 / 3 d u ) = 1 3 B ( 1 3 , 1 3 ) = 1 3 Γ 2 ( 1 3 ) Γ ( 2 3 ) \begin{aligned} I &=\frac{1}{3}\int_{0}^{\infty}{\left(\frac{dx}{{\left(x\left(1+x\right)\right)}^{2/3}}\right)} \\ &=\frac{1}{3}\int_{0}^{1}{\left(\frac{\frac{du}{{\left(1-u\right)}^2}}{{\left(\left(\frac{u}{1-u}\right)\left(1+\left(\frac{u}{1-u}\right)\right)\right)}^{2/3}}\right)} \\ &=\frac{1}{3}\int_{0}^{1}{\left(\frac{du}{{\left(u\left(1-u\right)\right)}^{2/3}}\right)} \\ &=\frac{1}{3}\int_{0}^{1}{\left(u^{-2/3}{\left(1-u\right)}^{-2/3}\,du\right)} \\ &=\frac{1}{3}\,\operatorname{B}{\left(\frac{1}{3},\frac{1}{3}\right)} \\ &=\frac{1}{3}\cdot\frac{\Gamma^2{\left(\frac{1}{3}\right)}}{\Gamma{\left(\frac{2}{3}\right)}} \end{aligned} Finally, we use Euler's reflection formula Γ ( z ) Γ ( 1 z ) = π sin ( π z ) \Gamma{\left(z\right)}\Gamma{\left(1-z\right)}=\frac{\pi}{\sin{\left(\pi z\right)}} to bring the answer to the desired form: I = 1 3 Γ 2 ( 1 3 ) Γ ( 2 3 ) = 1 3 ( π sin ( π / 3 ) ) 2 Γ 3 ( 2 3 ) = 1 3 4 π 2 / 3 Γ 3 ( 2 3 ) = 4 π 2 / 9 Γ 3 ( 2 / 3 ) I=\frac{1}{3}\cdot\frac{\Gamma^2{\left(\frac{1}{3}\right)}}{\Gamma{\left(\frac{2}{3}\right)}}=\frac{1}{3}\cdot\frac{{\left(\frac{\pi}{\sin{\left(\pi/3\right)}}\right)}^2}{\Gamma^3{\left(\frac{2}{3}\right)}}=\frac{1}{3}\cdot\frac{4\pi^2/3}{\Gamma^3{\left(\frac{2}{3}\right)}}=\boxed{\frac{4\pi^2/9}{\Gamma^3{\left(2/3\right)}}} and the answer is 1000 4 + 100 9 + 10 2 + 3 = 4923 1000\cdot4+100\cdot9+10\cdot2+3=4923 .

Note that the answer is not unique. Since Γ ( 2 3 ) = 3 2 Γ ( 5 3 ) \Gamma(\frac{2}{3}) = \frac{3}{2} \Gamma(\frac{5}{3}) , we can also express the answer as 4 9 π 2 27 8 Γ 3 ( 5 3 ) = 32 243 π 2 Γ 3 ( 5 3 ) . \frac{\frac{4}{9} \pi^2}{\frac{27}{8} \Gamma^3 (\frac{5}{3})} = \frac{\frac{32}{243} \pi^2}{\Gamma^3 (\frac{5}{3})}.

Jon Haussmann - 3 years, 9 months ago

Log in to reply

Thanks for pointing it out! I have adjusted the problem accordingly.

Anton Wu - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...