A Calculus Problem from Aly Ahmed 200716

Calculus Level pending

0 π 2 x sin ( x ) 3 + cos ( 2 x ) d x = ? \int_0^\pi \frac {2x \sin(x)}{3+\cos(2x)} dx = \ ?


The answer is 2.4674.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 16, 2020

I = 0 π 2 x sin x 3 + cos ( 2 x ) d x By identity a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 π ( 2 x sin x 3 + cos ( 2 x ) + 2 ( π x ) sin ( π x ) 3 + cos ( 2 ( π x ) ) ) d x = 1 2 0 π ( 2 x sin x 3 + cos ( 2 x ) + ( 2 π 2 x ) sin x 3 + cos ( 2 x ) ) d x = 0 π π sin x 3 + cos ( 2 x ) d x = 0 π π sin x 2 + 2 cos 2 x d x Let u = cos x d u = sin x d x = π 2 1 1 d x 1 + u 2 d x = π tan 1 u 2 1 1 n = π 2 4 2.47 \begin{aligned} I & = \int_0^\pi \frac {2x\sin x}{3+\cos (2x)} dx & \small \blue{\text{By identity }\int_a^b f(x)\ dx = \int_a^b f(a+b-x)\ dx} \\ & = \frac 12 \int_0^\pi \left(\frac {2x\sin x}{3+ \cos(2x)} + \frac {2(\pi-x)\sin (\pi-x)}{3+ \cos (2(\pi -x))} \right) dx \\ & = \frac 12 \int_0^\pi \left(\frac {2x\sin x}{3+ \cos(2x)} + \frac {(2\pi-2x)\sin x}{3+ \cos (2x)} \right) dx \\ & = \int_0^\pi \frac {\pi\sin x}{3+ \cos(2x)} dx \\ & = \int_0^\pi \frac {\pi\sin x}{2+ 2\cos^2 x} dx & \small \blue{\text{Let }u = \cos x \implies du = - \sin x \ dx} \\ & = \frac \pi 2 \int_{-1}^1 \frac {dx}{1+u^2} dx \\ & = \frac {\pi \tan^{-1} u}2 \bigg|_{-1}^1n= \frac {\pi^2}4 \approx \boxed{2.47} \end{aligned}

In the 2nd last step, it should be du, not dx.

Chiang Jun Siang - 11 months ago

Log in to reply

Thanks, I have changed it.

Chew-Seong Cheong - 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...