Integral #3

Calculus Level 2

f ( t ) = 2 t 1 1 x 2 d x f(t) = \int_{2}^{t}\frac{1}{1 - x^{2}}dx

For f ( t ) f(t) as defined above, exp ( lim t f ( t ) ) \displaystyle \exp \left(\lim_{t \to \infty} -f(t) \right) is equal to the area of an equilateral triangle of side length s s . What is s s ?

Notation: exp ( x ) = e x \exp(x) = e^x


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 26, 2020

f ( t ) = 2 t 1 1 x 2 d x = 2 t 1 ( x 1 ) ( x + 1 ) d x = 1 2 2 t ( 1 1 x + 1 1 + x ) d x = 1 2 ln ( x + 1 x 1 ) 2 t = 1 2 ( ln ( t + 1 t 1 ) ln 3 ) = 1 2 ln ( t + 1 3 ( t 1 ) ) \begin{aligned} f(t) & = \int_2^t \frac 1{1-x^2} dx \\ & = \int_2^t \frac 1{(x-1)(x+1)} dx \\ & = \frac 12 \int_2^t \left(\frac 1{1-x}+\frac 1{1+x}\right) dx \\ & = \frac 12 \ln \left(\frac {x+1}{x-1} \right) \bigg|_2^t \\ & = \frac 12 \left(\ln \left(\frac {t+1}{t-1} \right) - \ln 3 \right) \\ & = \frac 12 \ln \left(\frac {t+1}{3(t-1)} \right) \end{aligned}

Then we have:

exp ( lim t f ( t ) ) = lim t exp ( f ( t ) ) = lim t exp ( 1 2 ln t + 1 3 ( t 1 ) ) = lim t 3 ( t 1 ) t + 1 A / case, L’H o ˆ pital’s rule applies. = lim t 3 1 Differentiate up and down w.r.t. t . = 3 \begin{aligned} \exp \left(\lim_{t \to \infty} - f(t)\right) & = \lim_{t \to \infty} \exp \left(- f(t)\right) \\ & = \lim_{t \to \infty} \exp \left(-\frac 12 \ln \frac {t+1}{3(t-1)} \right) \\ & = \lim_{t \to \infty} \sqrt{\frac {3(t-1)}{t+1}} & \small \blue{\text{A }\infty/\infty \text{ case, L'Hôpital's rule applies.}} \\ & = \lim_{t \to \infty} \sqrt{\frac 31} & \small \blue{\text{Differentiate up and down w.r.t. }t.} \\ & = \sqrt 3 \end{aligned}

Area of an equilateral triangle is given by 3 s 2 4 = 3 s = 2 \dfrac {\sqrt 3 s^2}4 = \sqrt 3 \implies s = \boxed 2 .


Reference: L'Hôpital's rule

The given integral equals 1 2 ( ln t + 1 ln t 1 ln 3 ) \dfrac{1}{2}(\ln |t+1|-\ln |t-1|-\ln 3) . As t t tends to infinity, ln t + 1 t 1 \ln |\dfrac{t+1}{t-1}| approaches ln 1 = 0 \ln 1=0 , and f ( t ) f(t) approaches ln 3 -\ln \sqrt 3 and exp ( f ( t ) ) \exp \left (-f(t)\right) approaches 3 \sqrt 3 . So 3 = 3 s 2 4 \sqrt 3=\dfrac{\sqrt 3s^2}{4} and hence s = 2 s=\boxed 2 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...