Integral #5

Calculus Level 3

0 e x x x . . . 5 4 3 d x = a b c \int_{0}^{e} \sqrt{x \sqrt[3]{x \sqrt[4]{x \sqrt[5]{...} }}} dx = ab^{c} .

What is a + b + c a + b + c ?


The answer is 5.01854036379.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

A good way to solve this problem is to use partial sums and then extrapolate the series.

  • x = x 1 2 \sqrt{x} = x^{\frac{1}{2}}

  • x x 3 = x 1 3 + 1 2 = x 1 6 + 1 2 = x 2 3 \sqrt{x \sqrt[3]{x}} = x^{\frac{\frac{1}{3} + 1}{2}} = x^{\frac{1}{6} + \frac{1}{2}} = x^{\frac{2}{3}}

  • x x x 4 3 = x 1 4 + 1 3 + 1 2 = x 1 24 + 1 6 + 1 2 = x 17 24 \sqrt{x \sqrt[3]{x \sqrt[4]{x}}} = x^{\frac{\frac{\frac{1}{4} + 1}{3} + 1}{2}} = x^{\frac{1}{24} + \frac{1}{6} + \frac{1}{2}} = x^{\frac{17}{24}}

  • x x x x 5 4 3 = x 1 120 + 1 24 + 1 6 + 1 2 = x 43 60 \sqrt{x \sqrt[3]{x \sqrt[4]{x \sqrt[5]{x}}}} = x^{\frac{1}{120} + \frac{1}{24} + \frac{1}{6} + \frac{1}{2}} = x^{\frac{43}{60}}

If this process was repeated infinitely many times, it appears that the radicals would equal x k x^{k} where k = 2 1 n ! = 1 2 ! + 1 3 ! + 1 4 ! + . . . k = \sum_{2}^{\infty} \frac{1}{n!} = \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + ...

Recall that the Maclaurin series for e x e^{x} is e x = 1 + x + x 2 2 ! + x 3 3 ! + . . . e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + ... . Thus, e 2 = 1 2 ! + 1 3 ! + 1 4 ! + . . . e - 2 = \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + ...

The integral now becomes 0 e x e 2 d x \int_0^e x^{e - 2} dx . Solving yields 1 e 1 x e 1 0 e = 1 e 1 e e 1 \frac{1}{e - 1}x^{e-1} \rvert^e_0 = \frac{1}{e - 1}e^{e - 1} .

Therefore a = 1 e 1 , b = e , c = e 1 a = \frac{1}{e - 1}, b = e, c = e - 1 and a + b + c = 5.01854 a + b + c = \boxed{5.01854}

Nice question!

Note, however, that
e e 1 e 1 = 1 e ( e 1 ) e e = a b c \frac {e^{e-1}}{e-1} = \frac 1{e(e-1)}e^e = ab^c
so if it is assumed that a = 1 e ( e 1 ) , b = e , c = e a=\frac 1{e(e-1)}, b=e, c=e ,
then a + b + c = 1 e ( e 1 ) + e + e = 5.6507 a+b+c =\frac 1{e(e-1)}+e+e= 5.6507 could be an alternative answer.


A less ambiguous way to frame the question might be to say that the integral is equal to 1 a b a \frac 1a {b^a} and to ask for, e.g., a + b a+b .

Hypergeo H. - 1 year, 2 months ago

The integrand is x 1 2 ! + 1 3 ! + 1 4 ! + . . . = x e 2 x^{\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...}=x^{e-2} . So the value of the integral is e e 1 e 1 \dfrac{e^{e-1}}{e-1} . Hence a = 1 e 1 , b = e , c = e 1 a=\dfrac{1}{e-1}, b=e, c=e-1 and a + b + c = 2 e 2 3 e + 2 e 1 5.01854036379 a+b+c=\dfrac{2e^2-3e+2}{e-1}\approx \boxed {5.01854036379}

I = 0 e x x x 5 4 3 d x = 0 e ( x ( x ( x ( ) 1 5 ) 1 4 ) 1 3 ) 1 2 d x = 0 e x 1 2 ! + 1 3 ! + 1 4 ! + d x = 0 e x e 2 d x = x e 1 e 1 0 e = e e 1 e 1 \begin{aligned} I & =\int_0^e \sqrt{x\sqrt[3]{x\sqrt[4]{x\sqrt[5]\cdots}}} \ dx \\ & = \int_0^e \left(x \left(x \left(x \left(\cdots \right)^\frac 15\right)^\frac 14\right)^\frac 13\right)^\frac 12 dx \\ & = \int_0^e x^{\frac 1{2!}+\frac 1{3!}+\frac 1{4!} + \cdots} dx \\ & = \int_0^e x^{e-2} dx \\ & = \frac {x^{e-1}}{e-1} \bigg|_0^e \\ & = \frac {e^{e-1}}{e-1} \end{aligned}

Therefore a + b + c = 1 e 1 + e + e 1 5.019 a+b+c = \dfrac 1{e-1} + e + e-1 \approx \boxed{5.019} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...