Integral 665+1

Calculus Level 5

Evaluate the integral J = 0 ln ( 1 + x ) + e x 1 x 2 d x \displaystyle \mathcal J = \int_0^\infty \dfrac{\ln(1+x) + e^{-x} - 1}{x^2} \, dx .


The answer is 0.577216.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jul 6, 2018

Integration by parts gives 0 X ln ( 1 + x ) 1 + e x x 2 d x = [ ln ( 1 + x ) 1 + e x x ] 0 X + 0 X ( 1 e x x 1 1 + x ) d x = ln ( 1 + X ) 1 + e X X ln ( 1 + X ) + 0 X 1 e x x d x = ln ( 1 + X ) 1 + e X X ln ( 1 + X ) + [ ( 1 e x ) ln x ] 0 X 0 X e x ln x d x = ln ( 1 + X ) 1 + e X X ln ( 1 + X ) + ( 1 e X ) ln X 0 X e x ln x d x \begin{aligned} \int_0^X \frac{\ln(1+x) - 1 + e^{-x}}{x^2}\,dx & = \; \left[ -\frac{\ln(1+x) - 1 + e^{-x}}{x}\right]_0^X + \int_0^X \left(\frac{1-e^{-x}}{x} - \frac{1}{1+x}\right)\,dx \\ & = \; -\frac{\ln(1+X) - 1 + e^{-X}}{X} -\ln(1+X) + \int_0^X \frac{1 - e^{-x}}{x}\,dx \\ & = \; -\frac{\ln(1+X) - 1 + e^{-X}}{X} - \ln(1+X) + \Big[(1 - e^{-x})\ln x\Big]_0^X - \int_0^X e^{-x}\ln x\,dx \\ & = \; -\frac{\ln(1+X) - 1 + e^{-X}}{X} - \ln(1+X) + (1 - e^{-X})\ln X - \int_0^X e^{-x}\ln x\,dx \end{aligned} for all X > 0 X > 0 , and hence 0 ln ( 1 + x ) 1 + e x x 2 d x = 0 e x ln x d x \int_0^\infty \frac{\ln(1+x) - 1 + e^{-x}}{x^2}\,dx \; = \; -\int_0^\infty e^{-x}\ln x\,dx and this second integral is a standard one, so we know that 0 ln ( 1 + x ) 1 + e x x 2 d x = γ = 0.577216 . . . \int_0^\infty \frac{\ln(1+x) - 1 + e^{-x}}{x^2}\,dx \; = \; \gamma \; = \; \boxed{0.577216}...

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...