Integral and Beta Function

Calculus Level 4

0 π d x 3 + cos x = 1 a B ( 1 b , 1 c ) \large\int^{\pi}_{0}\frac{dx}{\sqrt{3+\cos x}}=\frac 1{a}B\left(\frac1b,\frac1c\right)

where a > 0 a>0 and b , c N b,c\in\mathbb N . Find a 2 b c \dfrac {a^2}{bc} .

Notation: B ( , ) B(\cdot , \cdot) denotes the beta function .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Apr 13, 2018

Note that I = 0 π d x 3 + cos x = 0 π d x 2 ( 1 + cos 2 1 2 x ) = 2 0 1 2 π d y 1 + cos 2 y I \; = \; \int_0^\pi \frac{dx}{\sqrt{3 + \cos x}} \; = \; \int_0^\pi \frac{dx}{\sqrt{2(1 + \cos^2\frac12x)}} \; = \; \sqrt{2}\int_0^{\frac12\pi}\frac{dy}{\sqrt{1 + \cos^2y}} The substitution u = cos 2 y u = \cos^2y now gives I = 2 1 0 1 1 + u × d u 2 u ( 1 u ) = 1 2 0 1 d u u ( 1 u 2 ) I \; = \; \sqrt{2}\int_1^0 \frac{1}{\sqrt{1+u}} \times \frac{-du}{2\sqrt{u(1-u)}} \; = \; \frac{1}{\sqrt{2}}\int_0^1 \frac{du}{\sqrt{u(1-u^2)}} and, finally, the substitution v = u 2 v = u^2 gives us I = 1 2 2 0 1 d v ( 1 v ) 1 2 v 3 4 = 1 2 2 B ( 1 4 , 1 2 ) I \; = \; \frac{1}{2\sqrt{2}}\int_0^1 \frac{dv}{(1-v)^{\frac12}v^{\frac34}} \; = \; \tfrac{1}{2\sqrt{2}}B\big(\tfrac14,\tfrac12\big) Thus a 2 = b c = 8 a^2 = bc = 8 , and so the answer is 1 \boxed{1} .

. .
Mar 7, 2021

Solving 0 π d x 3 + cos x = 1 a B ( 1 b , 1 c ) \displaystyle \int ^ \pi _ 0 \frac { dx } { \sqrt { 3 + \cos x } } = \frac 1aB ( \frac 1b, \frac 1c ) , then we get a 2 = b c \displaystyle a ^ 2 = bc , so a 2 b c = 1 \displaystyle \frac { a ^ 2 } { bc } = \boxed1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...