Integral and Derivative by J. S

Calculus Level 4

Let f ( x ) = ( 0 x e t 2 d t ) 2 \displaystyle f(x) = \left( \int_0^x e^{-t^2} \, dt \right)^2 and g ( x ) = 0 1 e x 2 ( t 2 + 1 ) t 2 + 1 d t \displaystyle g(x) = \int_0^1 \dfrac{e^{-x^2 (t^2 + 1)}}{t^2 + 1} \, dt . Find f ( π 4 ) + g ( π 4 ) f'\left(\dfrac{\pi}{4}\right) + g'\left(\dfrac{\pi}{4}\right) .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 28, 2017

f ( x ) = ( 0 x e t 2 d t ) 2 f ( x ) = 2 0 x e t 2 d t e x 2 = 2 e x 2 0 x e t 2 d t \begin{aligned} f(x) & = \left(\int_0^x e^{-t^2} dt \right)^2 \\ \implies f'(x) & = 2 \int_0^x e^{-t^2} dt \cdot e^{-x^2} \\ & = 2e^{-x^2} \int_0^x e^{-t^2} dt \end{aligned}

g ( x ) = 0 1 e x 2 ( t 2 + 1 ) t 2 + 1 d t g ( x ) = 0 1 2 x ( t 2 + 1 ) e x 2 ( t 2 + 1 ) t 2 + 1 d t = 2 x e x 2 0 1 e x 2 t 2 d t Let u = x t d u = x d t = 2 x e x 2 0 x e u 2 d u Replace u with t = 2 x e x 2 0 x e t 2 d t \begin{aligned} g(x) & = \int_0^1 \frac {e^{-x^2(t^2+1)}}{t^2+1} dt \\ \implies g'(x) & = \int_0^1 \frac {-2x(t^2+1)e^{-x^2(t^2+1)}}{t^2+1} dt \\ & = -2xe^{-x^2} \int_0^1 e^{-x^2t^2} dt & \small \color{#3D99F6} \text{Let }u = xt \implies du = x dt \\ & = -2xe^{-x^2} \int_0^x e^{-u^2} du & \small \color{#3D99F6} \text{Replace }u \text{ with }t \\ & = -2xe^{-x^2} \int_0^x e^{-t^2} dt \end{aligned}

Note that f ( x ) + g ( x ) = 2 e x 2 0 x e t 2 d t 2 e x 2 0 x e t 2 d t = 0 f'(x) + g'(x) = \displaystyle 2e^{-x^2} \int_0^x e^{-t^2} dt - 2e^{-x^2} \int_0^x e^{-t^2} dt = \boxed{0} for all x x .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...