Integral and Gamma Function (2)

Calculus Level 4

0 1 ( ln Γ ( x ) ) sin ( π x ) d x = 1 π ( 1 + ln π A ) \large \int_0^1(\ln\Gamma(x))\sin(\pi x)\ dx=\frac1\pi\left(1+\ln{\frac\pi A}\right)

Find A A .

Notation: Γ ( ) \Gamma(\cdot) denotes the gamma function .


Try a similar problem here .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brian Lie
Mar 10, 2018

I = 0 1 ( ln Γ ( x ) ) sin ( π x ) d x Using a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 1 ( ln Γ ( x ) + ln Γ ( 1 x ) ) sin ( π x ) d x = 1 2 0 1 ( ln Γ ( x ) Γ ( 1 x ) ) sin ( π x ) d x Using Euler’s reflection formula = 1 2 0 1 ( ln π sin ( π x ) ) sin ( π x ) d x = ln π 2 0 1 sin ( π x ) d x 1 2 0 1 ( ln sin ( π x ) ) sin ( π x ) d x Let u = π x d u = π d x = ln π 2 π cos ( π x ) 0 1 1 2 π 0 π ( ln sin u ) sin u d u See note = ln π π ln 2 1 π = 1 π ( 1 + ln π 2 ) \begin{aligned} I&=\int_0^1\left(\ln\Gamma(x)\right)\sin(\pi x)dx&\small\color{#3D99F6}\text{Using }\int_a^bf(x)dx=\int_a^bf(a+b-x)dx\\ &=\frac12\int_0^1\left(\ln\Gamma(x)+\ln\Gamma(1-x)\right)\sin(\pi x)dx\\ &=\frac12\int_0^1\left(\ln\Gamma(x)\Gamma(1-x)\right)\sin(\pi x)dx&\small\color{#3D99F6}\text{Using Euler's reflection formula}\\ &=\frac12\int_0^1\left(\ln\frac\pi{\sin(\pi x)}\right)\sin(\pi x)dx\\ &=\frac{\ln\pi}2\int_0^1\sin(\pi x)dx-\color{#3D99F6}\frac12\int_0^1\left(\ln\sin(\pi x)\right)\sin(\pi x)dx&\small\color{#3D99F6}\text{Let }u=\pi x\implies du=\pi dx\\ &=-\frac{\ln\pi}{2\pi}\cos(\pi x)\bigg|_0^1-\color{#3D99F6}\frac1{2\pi}\int_0^\pi\left(\ln\sin u\right)\sin udu&\small\color{#3D99F6}\text{See note}\\ &=\frac{\ln\pi}\pi-\color{#3D99F6}\frac{\ln 2-1}\pi\\ &=\frac1\pi\left(1+\ln{\frac\pi 2}\right) \end{aligned}

Therefore, A = 2 A=\boxed2 .


Note:

I 1 = 0 π ( ln sin u ) sin u d u sin u is symmetrical about u = π 2 = 2 0 π 2 ( ln sin u ) sin u d u = 2 0 π 2 ( ln sin u ) d ( 1 cos u ) = 2 ( ln sin u ) ( 1 cos u ) 0 + π 2 2 0 π 2 ( 1 cos u ) cos u sin u d u Clearly, lim u 0 + ( ln sin u ) ( 1 cos u ) = 0 = 2 0 π 2 ( 1 cos u ) cos u sin 2 u d cos u = 2 0 π 2 ( 1 1 1 + cos u ) d cos u = 2 ( cos u ln ( 1 + cos u ) ) 0 π 2 = 2 ( ln 2 1 ) \begin{aligned} I_1&=\int_0^\pi\left(\ln\sin u\right)\sin udu&\small\color{#3D99F6}\sin u\text{ is symmetrical about }u=\frac\pi 2\\ &=2\int_0^{\frac\pi2}\left(\ln\sin u\right)\sin udu\\ &=2\int_0^{\frac\pi2}\left(\ln\sin u\right)d(1-\cos u)\\ &=2\left(\ln\sin u\right)(1-\cos u)\bigg|_{0^+}^{\frac\pi2}-2\int_0^{\frac\pi2}\frac{(1-\cos u)\cos u}{\sin u}du&\small\color{#3D99F6}\text{Clearly, }\lim\limits_{u\rightarrow 0^+}\left(\ln\sin u\right)(1-\cos u)=0\\ &=2\int_0^{\frac\pi2}\frac{(1-\cos u)\cos u}{\sin^2 u}d\cos u\\ &=2\int_0^{\frac\pi2}\left(1-\frac1{1+\cos u}\right)d\cos u\\ &=2\left(\cos u-\ln(1+\cos u)\right)\bigg|_0^{\frac\pi2}\\ &=2(\ln 2-1) \end{aligned}

I like your solution style.

Chew-Seong Cheong - 3 years, 2 months ago

Log in to reply

It should be said that I like yours because I learned this style from you.

Brian Lie - 3 years, 2 months ago

Log in to reply

I am glad that you like the style.

Chew-Seong Cheong - 3 years, 2 months ago

Your step 3 in the note is absolutely brilliant. To not go for the usual antiderivative of sin(t) as -cos(t) but to just add a 1 to it in-order to adjust for the limit was eye-opening.

Arghyadeep Chatterjee - 1 year, 2 months ago

Log in to reply

Glad that you like it. I also have forgotten I did that.

Chew-Seong Cheong - 1 year, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...