The equation above holds true for positive integers , and , where and are coprime integers. Find .
Notation: denotes the gamma function .
This is a part of my set Integral and Gamma Function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I = ∫ 0 1 ( ln Γ ( x ) ) cos 2 ( π x ) d x = 2 1 ∫ 0 1 ( ln Γ ( x ) + ln Γ ( 1 − x ) ) cos 2 ( π x ) d x = 2 1 ∫ 0 1 ( ln Γ ( x ) Γ ( 1 − x ) ) cos 2 ( π x ) d x = 2 1 ∫ 0 1 ( ln sin ( π x ) π ) cos 2 ( π x ) d x = 2 ln π ∫ 0 1 cos 2 ( π x ) d x − 2 1 ∫ 0 1 ( ln sin ( π x ) ) cos 2 ( π x ) d x = 4 ln π ∫ 0 1 ( 1 + cos ( 2 π x ) ) d x − 2 π 1 ∫ 0 π ( ln sin u ) cos 2 u d u = 4 ln π − 2 π 1 ( − 2 π ln 2 − 4 π ) = 4 ln ( 2 π ) + 8 1 Using ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x Using Euler’s reflection formula Let u = π x ⟹ d u = π d x See note
Therefore, A + B + C = 4 + 1 + 8 = 1 3 .
Note:
I 1 = ∫ 0 π ( ln sin u ) cos 2 u d u = 2 1 ∫ 0 π ( ln sin u ) ( 1 + cos ( 2 u ) ) d u = 2 1 ∫ 0 π ( ln sin u ) d u + 4 1 ∫ 0 π ln sin u d sin ( 2 u ) = ∫ 0 π / 2 ( ln sin u ) d u + 4 1 ( ( ln sin u ) ( sin 2 u ) ∣ ∣ ∣ ∣ 0 π − ∫ 0 π sin u cos u sin ( 2 u ) d u ) = − 2 π ln 2 + 4 1 ( 0 − ∫ 0 π 2 cos 2 u d u ) = − 2 π ln 2 − 4 1 ∫ 0 π ( 1 + cos ( 2 u ) ) d u = − 2 π ln 2 − 4 π sin u is symmetrical about u = 2 π See the problem U s i n g s y m m e t r y ( a d v a n c e d )
Here is Using symmetry (advanced) .