Integral and Gamma Function (4)

Calculus Level 5

0 1 ( ln Γ ( x ) ) cos 2 ( π x ) d x = ln ( 2 π ) A + B C \int_0^1 (\ln\Gamma(x))\cos^2(\pi x)\ dx=\frac{\ln(2\pi)}A+\frac BC

The equation above holds true for positive integers A A , B B and C C , where B B and C C are coprime integers. Find A + B + C A+B+C .

Notation: Γ ( ) \Gamma(\cdot) denotes the gamma function .


This is a part of my set Integral and Gamma Function .


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brian Lie
May 25, 2018

I = 0 1 ( ln Γ ( x ) ) cos 2 ( π x ) d x Using a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 1 ( ln Γ ( x ) + ln Γ ( 1 x ) ) cos 2 ( π x ) d x = 1 2 0 1 ( ln Γ ( x ) Γ ( 1 x ) ) cos 2 ( π x ) d x Using Euler’s reflection formula = 1 2 0 1 ( ln π sin ( π x ) ) cos 2 ( π x ) d x = ln π 2 0 1 cos 2 ( π x ) d x 1 2 0 1 ( ln sin ( π x ) ) cos 2 ( π x ) d x Let u = π x d u = π d x = ln π 4 0 1 ( 1 + cos ( 2 π x ) ) d x 1 2 π 0 π ( ln sin u ) cos 2 u d u See note = ln π 4 1 2 π ( π ln 2 2 π 4 ) = ln ( 2 π ) 4 + 1 8 \begin{aligned} I&=\int_0^1(\ln\Gamma(x))\cos^2(\pi x)\ dx&\small\color{#3D99F6}\text{Using }\int_a^bf(x)dx=\int_a^bf(a+b-x)\ dx\\ &=\frac12\int_0^1(\ln\Gamma(x)+\ln\Gamma(1-x))\cos^2(\pi x)\ dx\\ &=\frac12\int_0^1(\ln\Gamma(x)\Gamma(1-x))\cos^2(\pi x)\ dx&\small\color{#3D99F6}\text{Using Euler's reflection formula}\\ &=\frac12\int_0^1\left(\ln\frac\pi{\sin(\pi x)}\right)\cos^2(\pi x)\ dx\\ &=\frac{\ln\pi}2\int_0^1\cos^2(\pi x)\ dx-\color{#3D99F6}\frac12\int_0^1(\ln\sin(\pi x))\cos^2(\pi x)\ dx&\small\color{#3D99F6}\text{Let }u=\pi x\implies du=\pi\ dx\\ &=\frac{\ln\pi}4\int_0^1(1+\cos(2\pi x))\ dx-\color{#3D99F6}\frac1{2\pi}\int_0^\pi(\ln\sin u)\cos^2 u\ du&\small\color{#3D99F6}\text{See note}\\ &=\frac{\ln\pi}4-\color{#3D99F6}\frac 1{2\pi}\left(-\frac {\pi\ln 2}2-\frac \pi4\right)\\ &=\frac {\ln(2\pi)}4+\frac 18 \end{aligned}

Therefore, A + B + C = 4 + 1 + 8 = 13 A+B+C=4+1+8=\boxed{13} .


Note:

I 1 = 0 π ( ln sin u ) cos 2 u d u = 1 2 0 π ( ln sin u ) ( 1 + cos ( 2 u ) ) d u = 1 2 0 π ( ln sin u ) d u + 1 4 0 π ln sin u d sin ( 2 u ) sin u is symmetrical about u = π 2 = 0 π / 2 ( ln sin u ) d u + 1 4 ( ( ln sin u ) ( sin 2 u ) 0 π 0 π cos u sin u sin ( 2 u ) d u ) See the problem U s i n g s y m m e t r y ( a d v a n c e d ) = π ln 2 2 + 1 4 ( 0 0 π 2 cos 2 u d u ) = π ln 2 2 1 4 0 π ( 1 + cos ( 2 u ) ) d u = π ln 2 2 π 4 \begin{aligned} I_1&=\int_0^\pi(\ln\sin u)\cos^2 u\ du\\ &=\frac 12\int_0^\pi(\ln\sin u)(1+\cos (2u))\ du\\ &=\color{#3D99F6}\frac 12\int_0^\pi(\ln\sin u)\ du\color{#333333}+\frac 14\int_0^\pi\ln\sin u\ d\sin(2u)&\small\color{#3D99F6}\sin u\text{ is symmetrical about }u=\frac \pi 2\\ &=\color{#3D99F6}\int_0^{\pi /2}(\ln\sin u)\ du\color{#333333}+\frac 14\left((\ln\sin u)(\sin 2u)\bigg|_0^\pi-\int_0^\pi\frac {\cos u}{\sin u}\sin (2u)\ du\right)&\small\color{#3D99F6}\text{See the problem }Using\ symmetry\ (advanced)\\ &=\color{#3D99F6}-\frac {\pi\ln 2}2\color{#333333}+\frac 14\left(0-\int_0^\pi2\cos^2u\ du\right)\\ &=-\frac {\pi\ln 2}2-\frac 14\int_0^\pi(1+\cos (2u))\ du\\ &=-\frac {\pi\ln 2}2-\frac \pi4 \end{aligned}

Here is Using symmetry (advanced) .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...