Integral and Gamma Function (1)

Calculus Level 4

0 1 ln Γ ( x ) d x = ln ( 2 π ) A \large \int_0^1\ln\Gamma(x)\ dx=\frac{\ln(2\pi)}A

Find A A .

Notation: Γ ( ) \Gamma(\cdot) denotes the gamma function .


Try a similar problem here .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 10, 2018

I = 0 1 ln Γ ( x ) d x Using a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 1 ( ln Γ ( x ) + ln Γ ( 1 x ) ) d x = 1 2 0 1 ln ( Γ ( x ) Γ ( 1 x ) ) d x = 1 2 0 1 ln ( π sin ( π x ) ) d x = 1 2 ( 0 1 ln π d x 0 1 ln ( sin ( π x ) ) d x ) Let u = π x d u = π d x = 1 2 ( x ln π 0 1 1 π 0 π ln ( sin u ) d u ) = ln π 2 1 2 π 0 π ln ( sin u ) d u See note. = ln π 2 ( ln 2 2 ) = ln ( 2 π ) 2 \begin{aligned} I & = \int_0^1 \ln \Gamma (x) \ dx & \small \color{#3D99F6} \text{Using }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 \int_0^1 \left(\ln \Gamma (x) + \ln \Gamma(1-x) \right) dx \\ & = \frac 12 \int_0^1 \ln \left(\Gamma (x) \Gamma(1-x) \right) dx \\ & = \frac 12 \int_0^1 \ln \left(\frac \pi{\sin (\pi x)} \right) dx \\ & = \frac 12 \left(\int_0^1 \ln \pi \ dx - {\color{#3D99F6} \int_0^1 \ln (\sin (\pi x))\ dx} \right) & \small \color{#3D99F6} \text{Let }u = \pi x \implies du = \pi \ dx \\ & = \frac 12 \left(x \ln \pi \ \bigg|_0^1 - {\color{#3D99F6} \frac 1\pi \int_0^\pi \ln (\sin u)\ du} \right) \\ & = \frac {\ln \pi}2 - \color{#3D99F6} \frac 1{2\pi} \int_0^\pi \ln (\sin u)\ du & \small \color{#3D99F6} \text{See note.} \\ & = \frac {\ln \pi}2 - \color{#3D99F6} \left(-\frac {\ln 2}2\right) \\ & = \frac {\ln (2\pi)}2 \end{aligned}

Therefore, A = 2 A = \boxed{2} .


Note:

I 1 = 0 π ln ( sin u ) d u sin u is symmetrical about u = π 2 = 2 0 π 2 ln ( sin u ) d u Using a b f ( x ) d x = a b f ( a + b x ) d x = 0 π 2 ( ln ( sin u ) + ln ( cos u ) ) d u = 0 π 2 ln ( sin u cos u ) d u = 0 π 2 ln ( sin ( 2 u ) 2 ) d u Let θ = 2 u d θ = 2 d u = 1 2 0 π ln ( sin θ ) d θ 0 π 2 ln 2 d u = 1 2 I 1 π ln 2 2 = π ln 2 \begin{aligned} I_1 & = \int_0^\pi \ln (\sin u) \ du & \small \color{#3D99F6} \sin u \text{ is symmetrical about }u = \frac \pi 2 \\ & = 2 \int_0^\frac \pi 2 \ln (\sin u) \ du & \small \color{#3D99F6} \text{Using }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \int_0^\frac \pi 2 (\ln (\sin u) + \ln (\cos u))\ du \\ & = \int_0^\frac \pi 2 \ln (\sin u\cos u)\ du \\ & = \int_0^\frac \pi 2 \ln \left(\frac {\sin (2u)}2 \right) du & \small \color{#3D99F6} \text{Let }\theta = 2u \implies d\theta = 2 \ du \\ & = \frac 12 \int_0^\pi \ln (\sin \theta) \ d\theta - \int_0^\frac \pi 2 \ln 2 \ du \\ & = \frac 12 I_1 - \frac {\pi \ln 2}2 \\ & = - \pi \ln 2 \end{aligned}

Could you tell me how to edit the horizontal line above the Note ?

Brian Lie - 3 years, 3 months ago

Log in to reply

Just leave a blank line then key in one or more --- and continue on the next line.


and continue

Chew-Seong Cheong - 3 years, 3 months ago

Log in to reply

Oh, thank you.

Brian Lie - 3 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...