integral and sines and stuff 2

Calculus Level 3

0 π 4 tanh 1 ( tan ( x ) ) d x = G a \large \int_0^{\frac{\pi }{4}} \tanh ^{-1}(\tan (x)) \, dx=\frac{G}{a}

where G G is Catalan's constant . Submit a a .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Dec 24, 2017

Note that tanh 1 ( tan x ) = 1 2 ln ( 1 + tan x 1 tan x ) = 1 2 ln ( cos x + sin x cos x sin x ) = 1 2 ln ( cot ( 1 4 π x ) ) \tanh^{-1}(\tan x) \; = \; \tfrac12\ln\left(\frac{1 + \tan x}{1 - \tan x}\right) \; = \; \tfrac12\ln\left(\frac{\cos x+ \sin x}{\cos x - \sin x}\right) \; = \; \tfrac12\ln\big(\cot(\tfrac14\pi - x)\big) and so 0 1 4 π tanh 1 ( tan x ) d x = 1 2 0 1 4 π ln ( cot ( 1 4 π x ) ) d x = 1 2 0 1 4 π ln ( cot x ) d x = 1 2 0 1 4 π ln ( tan x ) d x = 1 2 0 1 ln u 1 + u 2 d u = 1 2 n = 0 ( 1 ) n 1 0 1 u 2 n ln u d u = 1 2 n = 0 ( 1 ) n ( 2 n + 1 ) 2 = 1 2 G \begin{aligned} \int_0^{\frac14\pi}\tanh^{-1}(\tan x)\,dx & = \; \tfrac12\int_0^{\frac14\pi}\ln\big(\cot(\tfrac14\pi - x)\big)\,dx \; = \; \tfrac12\int_0^{\frac14\pi}\ln(\cot x)\,dx \\ & = \; -\tfrac12\int_0^{\frac14\pi}\ln(\tan x)\,dx \; = \; -\tfrac12\int_0^1 \frac{\ln u}{1 + u^2}\,du \; = \; \tfrac12\sum_{n=0}^\infty (-1)^{n-1}\int_0^1 u^{2n} \ln u\,du \\ & = \; \tfrac12\sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)^2} \; = \; \tfrac12G \end{aligned} making the answer 2 \boxed{2} .

. .
Feb 20, 2021

A denominator cannot be 0 0 , so we can exclude 0 from the answer.

Next, the answer of integral cannot be negative.

So if I let the answer to A A , then a > 0 a > 0 .

And the answer of integral can be positive and irrational, rational.

We get 0 π 4 tanh 1 ( tan ( x ) ) d x = G a \displaystyle \int ^ { \frac { \pi } { 4 } } _ { 0 } \tanh ^ { -1 } ( \tan ( x ) ) dx = \frac { G } { a } .

Solving this problem, we get a = 2 a = \boxed { \boxed { 2 } } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...