Integral Cake Delivery IIIII

Calculus Level 4

0 π 4 sin 2 x cos 3 x d x \int_0^{\frac {\pi}{4}} \frac {\sin ^ 2 x}{\cos ^ 3 x}\ dx

If my delivery equals a b { c ln ( d + e ) } \frac ab \{\sqrt {c} - \ln (d + \sqrt {e})\} , a,b,c,d,e are positive integers , find a + b + c + d + e a+b+c+d+e .


The answer is 8.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hassan Abdulla
May 26, 2020

\(\begin{align*} I &= \int_0^\frac{\pi}{4} \frac{\sin^2(x)}{\cos^3(x)} dx = \int_0^\frac{\pi}{4} \sec(x) \tan^2(x) dx \\

&= \int_0^\frac{\pi}{4} \sec^3(x) - \sec(x) dx & {\color{blue} \tan^2(x) =\sec^2(x) - 1 } \\

& {\color{red} \int \sec^3(x) dx = \sec(x)\cdot \tan(x) - \int \sec(x) \tan^2(x) dx = \sec(x)\cdot \tan(x) - I } & {\color{blue} u=\sec(x) \ dv=\sec^2(x) } \\

& {\color{red} \int \sec(x) dx = \int \sec(x) \cdot \frac{\sec(x)+\tan(x)}{\sec(x)+\tan(x)} dx = \int \frac{\sec^2(x)+\sec(x) \tan(x)}{\sec(x)+\tan(x)} dx } \\

& {\color{red} \int \sec(x) dx = \ln(\sec(x)+\tan(x)) } \\

I &= \sec(x)\cdot \tan(x) - I - \ln(\sec(x)+\tan(x)) \\ 2I &= \sec(x)\cdot \tan(x) - \ln(\sec(x)+\tan(x)) \\ I &= \frac{1}{2}\left (\left .\sec(x)\cdot \tan(x) - \ln(\sec(x)+\tan(x)) \right |_0^\frac{\pi}{4} \right ) \\

I &= \frac{1}{2}\left ( \sqrt(2) - \ln(\sqrt(2)+1)\right ) \\ \end{align*}\)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...