Integral Cake Delivery IIIIIII

Calculus Level 4

0 π / 2 d x ( 1 + cos x ) 2 = ? \large \int_0^{\pi /2} \dfrac{ dx}{(1+ \cos x)^2 } = \, ?

Give your answer to 2 decimal places.


The answer is 0.66.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Théo Leblanc
May 3, 2019

For this integral, I think the best way is Weierstrass substitution which transform an integral of a rational function in sine and cosine into an integral of a rational function in t or x, no matter.

Sum up:

F ( cos ( x ) , sin ( x ) ) d x Weierstrass substitution G ( t ) d t \displaystyle \int F(\cos(x),\sin(x))dx \quad \underset{\text{Weierstrass substitution}}\rightarrow \quad \int G(t)dt

Where F F and G G are rational functions ie F = P Q , G = R S F=\frac{P}{Q}, \ G=\frac{R}{S} where P , Q , R , S P, Q, R, S are polynomials ( P P and Q Q have two variables).

Let's go into the maths! The Weierstrass substitution is t = tan ( x 2 ) t=\tan(\frac{x}{2}) . Then: cos ( x ) = 2 cos 2 ( x / 2 ) 1 = 2 1 + t 2 1 = 1 t 2 1 + t 2 \cos(x)=2\cos^2(x/2)-1=\frac{2}{1+t^2}-1=\frac{1-t^2}{1+t^2}

sin ( x ) = 2 sin ( x / 2 ) cos ( x / 2 ) = 2 t cos 2 ( x / 2 ) = 2 t 1 + t 2 \sin(x)=2\sin(x/2)\cos(x/2)=2t\cos^2(x/2)=\frac{2t}{1+t^2}

d t = 1 2 ( 1 + t 2 ) d x dt=\frac{1}{2}(1+t^2)dx

ie d x = 2 1 + t 2 d t dx=\frac{2}{1+t^2}dt

Plugging in our integral:

0 π / 2 d x ( 1 + cos ( x ) ) 2 = 0 1 2 d t ( 1 + t 2 ) ( 1 + 1 t 2 1 + t 2 ) 2 = 0 1 2 ( 1 + t 2 ) ( 1 + t 2 + 1 t 2 ) 2 d t = 1 2 0 1 ( 1 + t 2 ) d t = 2 3 \displaystyle \int_{0}^{π/2} \frac{dx}{(1+\cos(x))^2} \\ = \displaystyle \int_{0}^{1}\frac{2dt}{(1+t^2)(1+\frac{1-t^2}{1+t^2})^2} \\ = \displaystyle \int_{0}^{1}\frac{2(1+t^2)}{(1+t^2+1-t^2)^2}dt \\ = \displaystyle \frac{1}{2}\int_{0}^{1}(1+t^2)dt \\ =\boxed{\frac{2}{3}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...