The above integral is equal to for positive integers and with and being coprime. Evaluate .
Note: You are given that .
inspired by Vishwak Srinivasan
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
∫ 0 ∞ 1 − x 2 ln ( x ) d x = ∫ 0 1 1 − x 2 ln ( x ) d x + ∫ 1 ∞ 1 − x 2 ln ( x ) d x ∫ 1 ∞ 1 − x 2 ln ( x ) d x = ∫ 1 0 1 − u 2 1 ln ( u 1 ) u 2 − d u = ∫ 0 1 1 − u 2 ln ( u ) d u N o w l e t I = ∫ 0 1 1 − x 2 ln ( x ) d x s o ∫ 0 ∞ 1 − x 2 ln ( x ) d x = 2 I 0 < x < 1 ⇒ 1 − x 2 1 = k = 0 ∑ ∞ x 2 k // geometric series I = ∫ 0 1 1 − x 2 ln ( x ) d x = ∫ 0 1 k = 0 ∑ ∞ x 2 k ⋅ ln ( x ) d x = k = 0 ∑ ∞ ∫ 0 1 x 2 k ⋅ ln ( x ) d x I = k = 0 ∑ ∞ [ 2 k + 1 x 2 k + 1 ln ( x ) ∣ 0 1 ] − 2 k + 1 1 ∫ 0 1 x 2 k d x = − k = 0 ∑ ∞ ( 2 k + 1 ) 2 1 // integration by part I is only the odd squares so I = − [ k = 1 ∑ ∞ k 2 1 − k = 1 ∑ ∞ ( 2 k ) 2 1 ] = − [ k = 1 ∑ ∞ k 2 1 − 4 1 k = 1 ∑ ∞ k 2 1 ] I = − [ 6 π 2 − 4 1 ⋅ 6 π 2 ] = − 8 π 2 ∫ 0 ∞ 1 − x 2 ln ( x ) d x = 2 ⋅ − 8 π 2 = − 4 π 2 a + b + c = 7