integral_03

Calculus Level 3

0 x 6 1 + 256 x 8 d x = a π b c d \large \int _{ 0 }^{ \infty }{ \frac { { x }^{ 6 } }{ 1+256{ x }^{ 8 } } dx } =\frac { a\pi }{ b\sqrt { c-\sqrt { d } } }

The equation above holds true for positive integers a a , b b , c c , and d d , where gcd ( a , b ) = 1 \gcd(a,b)=1 and d d is square free. Find a b c d abcd .


The answer is 2048.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hassan Abdulla
Aug 30, 2017

let x = u 2 d x = d u 2 x=\frac { u }{ 2 } \Rightarrow dx=\frac { du }{ 2 }

I = 0 x 6 1 + 256 x 8 d x = 1 2 7 0 u 6 1 + u 8 d u I=\int _{ 0 }^{ \infty }{ \frac { { x }^{ 6 } }{ 1+256{ x }^{ 8 } } dx } =\frac { 1 }{ { 2 }^{ 7 } } \int _{ 0 }^{ \infty }{ \frac { { u }^{ 6 } }{ 1+u^{ 8 } } } du

I = 1 2 7 0 1 1 + u 8 d u / / 0 f ( x ) d x = 0 f ( 1 x ) x 2 d x I=\frac { 1 }{ { 2 }^{ 7 } } \int _{ 0 }^{ \infty }{ \frac { 1 }{ 1+u^{ 8 } } } du\qquad //\int _{ 0 }^{ \infty }{ f\left( x \right) dx } =\int _{ 0 }^{ \infty }{ \frac { f\left( \frac { 1 }{ x } \right) }{ { x }^{ 2 } } dx }

I = 1 2 7 π 8 sin ( π 8 ) = π 2 10 sin ( π 8 ) I=\frac { 1 }{ { 2 }^{ 7 } } \cdot \frac { \pi }{ 8\cdot \sin { \left( \frac { \pi }{ 8 } \right) } } =\frac { \pi }{ { 2 }^{ 10 }\cdot \sin { \left( \frac { \pi }{ 8 } \right) } } //see Note(1)

I = π 2 10 1 2 2 2 = 1 π 2 9 2 2 I=\frac { \pi }{ { 2 }^{ 10 }\cdot \frac { 1 }{ 2 } \sqrt { 2-\sqrt { 2 } } } =\frac { 1\pi }{ { 2 }^{ 9 }\sqrt { 2-\sqrt { 2 } } } \ //see Note(2)

a = 1 , b = 2 9 , c = 2 , d = 2 a=1, b={ 2 }^{ 9 }, c=2, d=2

a × b × c × d = 2 11 = 2048 a\times b\times c\times d={ 2 }^{ 11 }=2048

Note(1) :

0 1 1 + x 2 n d x \int _{ 0 }^{ \infty }{ \frac { 1 }{ 1+{ x }^{ 2n } } dx } * we will use contour integration *

1 1 + z 2 n d z = R R 1 1 + x 2 n d x + γ R 1 1 + z 2 n d z \oint { \frac { 1 }{ 1+{ z }^{ 2n } } dz= } \int _{ -R }^{ R }{ \frac { 1 }{ 1+{ x }^{ 2n } } dx } +\int _{ \gamma R }^{ }{ \frac { 1 }{ 1+{ z }^{ 2n } } dz }

as R γ R 1 1 + z 2 n d z = 0 R\rightarrow \infty \qquad \int _{ \gamma R }^{ }{ \frac { 1 }{ 1+{ z }^{ 2n } } dz } =0 //seepoof(a)

1 1 + z 2 n d z = 2 π i z k A R e s ( f ( z k ) ) \oint { \frac { 1 }{ 1+{ z }^{ 2n } } dz= } 2\pi i\cdot \sum _{ { z }_{ k }\in A }^{ }{ Res\left( f\left( { z }_{ k } \right) \right) } \qquad //A is the set of all poles inside contour // Residue Theorem

1 1 + z 2 n d z = 2 π i 1 2 n i sin ( π 2 n ) = 2 π 2 n sin ( π 2 n ) \oint { \frac { 1 }{ 1+{ z }^{ 2n } } dz= } 2\pi i\cdot \frac { 1 }{ 2ni\cdot \sin { \left( \frac { \pi }{ 2n } \right) } } =\frac { 2\pi }{ 2n\sin { \left( \frac { \pi }{ 2n } \right) } } //see poof(b)

Now

1 1 + z 2 n d z = R R 1 1 + x 2 n d x + γ R 1 1 + z 2 n d z \oint { \frac { 1 }{ 1+{ z }^{ 2n } } dz= } \int _{ -R }^{ R }{ \frac { 1 }{ 1+{ x }^{ 2n } } dx } +\int _{ \gamma R }^{ }{ \frac { 1 }{ 1+{ z }^{ 2n } } dz }

a s R 2 π 2 n sin ( π 2 n ) = 1 1 + x 2 n d x + 0 asR\rightarrow \infty \frac { 2\pi }{ 2n\sin { \left( \frac { \pi }{ 2n } \right) } } =\int _{ -\infty }^{ \infty }{ \frac { 1 }{ 1+{ x }^{ 2n } } dx } +0

0 1 1 + x 2 n d x = π 2 n sin ( π 2 n ) \Rightarrow \int _{ 0 }^{ \infty }{ \frac { 1 }{ 1+{ x }^{ 2n } } dx } =\frac { \pi }{ 2n\sin { \left( \frac { \pi }{ 2n } \right) } }

poof(a):

γ R 1 1 + z 2 n d z M L \left| \int _{ \gamma R }^{ }{ \frac { 1 }{ 1+{ z }^{ 2n } } dz } \right| \le ML

//where M = max 1 1 + z 2 n M=\max { \left| \frac { 1 }{ 1+{ z }^{ 2n } } \right| } and L is the length of γ R = π R \gamma R=\pi R which is Half circle

z 2 n + 1 z 2 n 1 = R 2 n 1 = R 2 n 1 \left| { z }^{ 2n }+1 \right| \ge \left| { \left| z \right| }^{ 2n }-\left| 1 \right| \right| =\left| { R }^{ 2n }-1 \right| ={ R }^{ 2n }-1 // z = R \left| z \right| =R and R>1

1 1 + z 2 n 1 R 2 n 1 1 1 + z 2 n max 1 1 + z 2 n 1 R 2 n 1 \Rightarrow \left| \frac { 1 }{ 1+{ z }^{ 2n } } \right| \le \frac { 1 }{ { R }^{ 2n }-1 } \Rightarrow \left| \frac { 1 }{ 1+{ z }^{ 2n } } \right| \le \max { \left| \frac { 1 }{ 1+{ z }^{ 2n } } \right| } \le \frac { 1 }{ { R }^{ 2n }-1 }

as R R\rightarrow \infty γ R 1 1 + z 2 n d z M L π R R 2 n 1 = 0 \left| \int _{ \gamma R }^{ }{ \frac { 1 }{ 1+{ z }^{ 2n } } dz } \right| \le ML\le \frac { \pi R }{ { R }^{ 2n }-1 } =0

poof(b):

let z = r e i θ z 2 n = r z={ re }^{ i\theta }\Rightarrow { z }^{ 2n }=r

so when 1 + z 2 n = 0 1 + r e i 2 n θ = 0 r e i 2 n θ = 1 1+{ z }^{ 2n }=0\Rightarrow 1+r{ e }^{ i2n\theta }=0\Rightarrow r{ e }^{ i2n\theta }=-1

\Rightarrow r=1 and c o s ( 2 n θ ) = 1 2 n θ = ( 2 k + 1 ) π θ = 2 k + 1 2 n π \\cos { \left( 2n\theta \right) } =-1\Rightarrow 2n\theta =\left( 2k+1 \right) \pi \Rightarrow \theta =\frac { 2k+1 }{ 2n } \pi for k=0,1,2,......,2n-1

But we will take value of k from 0 to (n-1) because the other poles are outside contour \ when k=n θ = 2 n + 1 2 n π > π \Rightarrow \theta =\frac { 2n+1 }{ 2n } \pi >\pi

R e s ( f ( z k ) ) = lim z z k ( ( z z k ) 1 1 + z 2 n ) = lim z z k ( 1 2 n z 2 n 1 ) = z k 2 n z k 2 n Res\left( f\left( { z }_{ k } \right) \right) =\lim _{ z\rightarrow { z }_{ k } }{ \left( \left( z-{ z }_{ k } \right) \cdot \frac { 1 }{ 1+{ z }^{ 2n } } \right) } =\lim _{ z\rightarrow { z }_{ k } }{ \left( \frac { 1 }{ 2n\cdot { z }^{ 2n-1 } } \right) } =\frac { { z }_{ k } }{ 2n\cdot { { z }_{ k } }^{ 2n } } //L'Hospital'sRule ( 0 0 ) \left( \frac { 0 }{ 0 } \right)

R e s ( f ( z k ) ) = e i ( 2 k + 1 2 n π ) 2 n e i ( 2 k + 1 ) π = e i π n k e i π 2 n 2 n e i 2 π k e i π = ( e i π n ) k e i π 2 n 2 n ( e i 2 π ) k e i π Res\left( f\left( { z }_{ k } \right) \right) =\frac { { e }^{ i\left( \frac { 2k+1 }{ 2n } \pi \right) } }{ 2n\cdot { e }^{ i\left( 2k+1 \right) \pi } } =\frac { { e }^{ i\frac { \pi }{ n } k }\cdot { e }^{ i\frac { \pi }{ 2n } } }{ 2n\cdot { e }^{ i2\pi k }\cdot { e }^{ i\pi } } =\frac { { \left( { e }^{ i\frac { \pi }{ n } } \right) }^{ k }\cdot { e }^{ i\frac { \pi }{ 2n } } }{ 2n\cdot { { \left( { e }^{ i2\pi } \right) }^{ k } }\cdot { e }^{ i\pi } } / / z k = e i ( 2 k + 1 2 n π ) //{ z }_{ k }={ e }^{ i\left( \frac { 2k+1 }{ 2n } \pi \right) } // Euler's Formula

R e s ( f ( z k ) ) = e i π 2 n 2 n ( e i π n ) k Res\left( f\left( { z }_{ k } \right) \right) =\frac { { -e }^{ i\frac { \pi }{ 2n } } }{ 2n } { \left( { e }^{ i\frac { \pi }{ n } } \right) }^{ k } / / e i 2 π = 1 , e i π = 1 //{ e }^{ i2\pi }=1,{ e }^{ i\pi }=-1

so z k A R e s ( f ( z k ) ) = k = 0 n 1 e i π 2 n 2 n ( e i π n ) k = e i π 2 n 2 n k = 0 n 1 ( e i π n ) k = e i π 2 n 2 n ( e i π n ) n 1 e i π n 1 \sum _{ { z }_{ k }\in A }^{ }{ Res\left( f\left( { z }_{ k } \right) \right) } =\sum _{ k=0 }^{ n-1 }{ \frac { { -e }^{ i\frac { \pi }{ 2n } } }{ 2n } { \left( { e }^{ i\frac { \pi }{ n } } \right) }^{ k } } =\frac { { -e }^{ i\frac { \pi }{ 2n } } }{ 2n } \sum _{ k=0 }^{ n-1 }{ { \left( { e }^{ i\frac { \pi }{ n } } \right) }^{ k } } =\frac { { -e }^{ i\frac { \pi }{ 2n } } }{ 2n } \cdot \frac { { \left( { e }^{ i\frac { \pi }{ n } } \right) }^{ n }-1 }{ { e }^{ i\frac { \pi }{ n } }-1 } //geometric sum

= e i π 2 n 2 n e i π 1 e i π n 1 = e i π 2 n 2 n 2 e i π n 1 ( e i π 2 n e i π 2 n ) = 2 2 n ( e i π 2 n e i π 2 n ) ( i i ) =\frac { { -e }^{ i\frac { \pi }{ 2n } } }{ 2n } \cdot \frac { { e }^{ i\pi }-1 }{ { e }^{ i\frac { \pi }{ n } }-1 } =\frac { { -e }^{ i\frac { \pi }{ 2n } } }{ 2n } \cdot \frac { -2 }{ { e }^{ i\frac { \pi }{ n } }-1 } \cdot \left( \frac { { e }^{ -i\frac { \pi }{ 2n } } }{ { e }^{ -i\frac { \pi }{ 2n } } } \right) =\frac { 2 }{ 2n\left( { e }^{ i\frac { \pi }{ 2n } }-{ e }^{ -i\frac { \pi }{ 2n } } \right) } \cdot \left( \frac { i }{ i } \right)

= 1 i 1 2 n sin ( π 2 n ) / / sin ( x ) = e x e x 2 i =\frac { 1 }{ i } \cdot \frac { 1 }{ 2n\sin { \left( \frac { \pi }{ 2n } \right) } } \quad //\sin { \left( x \right) } =\frac { { e }^{ x }-{ e }^{ -x } }{ 2i }

Note(2) :

sin ( π 8 ) = sin ( 1 2 π 4 ) = 1 cos ( π 4 ) 2 = 1 2 2 2 \sin { \left( \frac { \pi }{ 8 } \right) } =\sin { \left( \frac { 1 }{ 2 } \cdot \frac { \pi }{ 4 } \right) } =\sqrt { \frac { 1-\cos { \left( \frac { \pi }{ 4 } \right) } }{ 2 } } =\sqrt { \frac { 1-\frac { \sqrt { 2 } }{ 2 } }{ 2 } }

= 2 2 4 = 1 2 2 2 =\sqrt { \frac { 2-\sqrt { 2 } }{ 4 } } =\frac { 1 }{ 2 } \cdot \sqrt { 2-\sqrt { 2 } }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...