Integral Co-ordinates -3

Geometry Level 3

Find the total number of interior points having integral co-ordinates that lie inside the triangle having vertices as P ( 2019 , 2017 ) , Q ( 2016 , 2020 ) P(2019,2017) , Q(2016,2020) and R ( 2018 , 2021 ) R(2018,2021)


Bonus: Can you generalize it for a triangle having vertices as ( α 1 , α 2 ) , ( β 1 , β 2 ) (\alpha _1 , \alpha _2) , (\beta _1 , \beta _2) and ( γ 1 , γ 2 ) ? (\gamma _1 , \gamma _2)?

Try also Integral Co-ordinates--2 .

Try also Integral Co-ordinates .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Lets take yhe vertices as P ( α 1 , α 2 ) , Q ( β 1 , β 2 ) P(\alpha _1 , \alpha _2) , Q(\beta _1, \beta _2) and R ( γ 1 , γ 2 ) R(\gamma _1 , \gamma _2)

Let L 1 L_1 be the line joining P P and Q Q , L 2 L_2 be line joining Q Q and R R and L 3 L_3 be line joining P P and R R

Hence, L 1 x α 1 β 1 α 1 = y α 2 β 2 α 2 L_1 \rightarrow \dfrac {x - \alpha _1}{\beta _1 - \alpha _1} = \dfrac {y - \alpha _2}{\beta _2 - \alpha _2}

L 2 x β 1 γ 1 β 1 = y β 2 γ 2 β 2 L_2 \rightarrow \dfrac {x - \beta _1}{\gamma _1 - \beta _1} = \dfrac {y - \beta _2}{\gamma _2 - \beta _2}

And L 3 x γ 1 γ 1 α 1 = y γ 2 γ 2 α 2 L_3 \rightarrow \dfrac {x - \gamma _1}{\gamma _1 - \alpha _1} = \dfrac {y - \gamma _2}{\gamma _2 - \alpha _2}

Using Pick's Theorem , Area of Polygon, A = I + B 2 1 A = I + \dfrac B2 -1

Where, I I is number of points on the interior of the polygon

B B is the number of points on the boundary of the polygon.

B = B= Number of points on the lines L 1 , L 2 {\color{#20A900}{L_1}},{\color{#3D99F6}{L_2}} and L 3 {\color{#D61F06}{L_3}} including end points

= g c d ( β 2 α 2 , β 1 α 1 ) 1 + g c d ( γ 2 β 2 , γ 1 β 1 ) 1 + g c d ( γ 2 α 2 , γ 1 α 1 ) 1 + 3 P , Q , R = {\color{#20A900}{gcd(\beta _2 - \alpha _2 , \beta _1 - \alpha _1) -1}} + {\color{#3D99F6}{gcd(\gamma _2 - \beta _2 , \gamma _1 - \beta _1) - 1}} + {\color{#D61F06}{gcd(\gamma _2 - \alpha _2 , \gamma _1 - \alpha _1) - 1}} + 3_{P, Q, R}

Area of Triangle is given by A = 1 2 α 1 α 2 1 β 1 β 2 1 γ 1 γ 2 1 A'= \dfrac 12 \begin{vmatrix} \alpha _1 & \alpha _2 & 1 \\ \beta _1 & \beta _2 & 1 \\ \gamma _1 & \gamma _2 & 1 \end{vmatrix}

Now, A = A A = A'

N = I = 1 2 α 1 α 2 1 β 1 β 2 1 γ 1 γ 2 1 1 2 ( g c d ( β 2 α 2 , β 1 α 1 ) + g c d ( γ 2 β 2 , γ 1 β 1 ) + g c d ( γ 2 α 2 , γ 1 α 1 ) ) + 1 \boxed{{\color{#20A900}{N = I = \dfrac 12 \begin{vmatrix} \alpha _1 & \alpha _2 & 1 \\ \beta _1 & \beta _2 & 1 \\ \gamma _1 & \gamma _2 & 1 \end{vmatrix} - \dfrac 12 ( gcd(\beta _2 - \alpha _2 , \beta _1 - \alpha _1) + gcd(\gamma _2 - \beta _2 , \gamma _1 - \beta _1) + gcd(\gamma _2 - \alpha _2 , \gamma _1 - \alpha _1) ) + 1}}}

Now, for our Coordinates input in the above formula to get N = 3 N = \boxed{3}

Shifting the triangle in the co-ordinate plane would not change the number of lattice points since two similarly-oriented congruent triangles should have the same no. of lattice points. We can shift the triangle by subtracting equal x and y-coordinates from each vertex preserving the similar orientation and congruency. . So, required no. of points will be same as that inside P = ( 3 , 0 ) ; Q = ( 0 , 3 ) ; R = ( 2 , 4 ) P'=(3,0);Q'=(0,3);R'=(2,4) -- x co.ordniate - 2016,y co.ordinate - 2017. Now either employ pick's theorem or if not use manual counting.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...