Integral could be worth generalising

Calculus Level 5

0 log x 625 + x 2 d x = π m log n \int_0^\infty \frac{\log x}{625+x^2} \, dx = \frac {\pi}{m}\log n

The equation above holds for integers m m and n n , with n n being power free. Find m + n m+n .


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Karan Chatrath
Aug 14, 2019

An alternate way of approaching the problem:

I = 0 ln x N 2 + x 2 d x I = \int_{0}^{\infty} \frac{\ln{x}}{N^2 + x^2}dx

Let: x = N tan θ x = N\tan{\theta} d x = N sec 2 θ d θ dx = N\sec^2{\theta}d\theta

When x = 0 x = 0 , θ = 0 \theta = 0 and when x = x = \infty , θ = π / 2 \theta = \pi/2 . This gives:

I = 0 π 2 ln ( N tan θ ) N 2 + N 2 tan 2 θ N sec 2 θ d θ I = \int_{0}^{\frac{\pi}{2}}\frac{\ln(N\tan{\theta})}{N^2 + N^2\tan^2{\theta}}N\sec^2{\theta}d\theta

I = 0 π 2 ln ( N tan θ ) N 2 sec 2 θ N sec 2 θ d θ I = \int_{0}^{\frac{\pi}{2}}\frac{\ln(N\tan{\theta})}{N^2\sec^2{\theta}}N\sec^2{\theta}d\theta

I = 1 N 0 π 2 ln ( N tan θ ) d θ I = \frac{1}{N}\int_{0}^{\frac{\pi}{2}}\ln(N\tan{\theta})d\theta

Knowing that:

a b f ( x ) d x = a b f ( a + b x ) d x \int_{a}^{b}f(x)dx = \int_{a}^{b}f(a+b-x)dx

I = 1 N 0 π 2 ln ( N cot θ ) d θ I = \frac{1}{N}\int_{0}^{\frac{\pi}{2}}\ln(N\cot{\theta})d\theta

Therefore:

2 I = 1 N 0 π 2 ( ln ( N tan θ ) + ln ( N cot θ ) ) d θ 2I = \frac{1}{N}\int_{0}^{\frac{\pi}{2}} \left(\ln(N\tan{\theta}) + \ln(N\cot{\theta})\right)d\theta

I = 1 2 N 0 π 2 ln ( N 2 ) d θ I = \frac{1}{2N}\int_{0}^{\frac{\pi}{2}}\ln(N^2)d\theta

I = ln ( N ) N 0 π 2 d θ I = \frac{\ln(N)}{N}\int_{0}^{\frac{\pi}{2}}d\theta

I = π ln ( N ) 2 N \boxed{I = \frac{\pi\ln(N)}{2N}}

Taking N = 25 N = 25 gives:

I = π ln ( 25 ) 50 = π ln ( 5 ) 25 I = \frac{\pi\ln(25)}{50} = \frac{\pi\ln(5)}{25}

This leads to: m = 25 m = 25 and n = 5 n = 5 and therefore the final answer is:

m + n = 30 \boxed{m+n = 30}

Nice alternative method...

Mark Hennings - 1 year, 10 months ago
Mark Hennings
Aug 14, 2019

The substitution x = y 1 x = y^{-1} gives us that 0 ln x 1 + x 2 d x = 0 ln y 1 + y 2 d y = 0 \int_0^\infty \frac{\ln x}{1 + x^2}\,dx \; = \; -\int_0^\infty \frac{\ln y}{1 + y^2}\,dy \; = \; 0 and now the sibstitution x = N u x = Nu gives 0 ln x N 2 + x 2 d x = 1 N 0 ln N + ln u 1 + u 2 d u = 1 N ln N 0 d u 1 + u 2 = 1 2 N π ln N \int_0^\infty \frac{\ln x}{N^2 + x^2}\,dx \; = \; \frac{1}{N}\int_0^\infty \frac{\ln N + \ln u}{1 + u^2}\,du \; = \; \frac{1}{N}\ln N \int_0^\infty \frac{du}{1+u^2} \; = \; \frac{1}{2N}\pi\ln N With N = 25 N=25 we see that I = 1 50 π ln 25 = 1 25 π ln 5 I = \tfrac{1}{50}\pi\ln25 = \tfrac{1}{25}\pi\ln5 , making the answer 25 + 5 = 30 25+5=\boxed{30} .

Wow, I feel so silly for not noticing the easy way to show that integral is zero... nice.

William Allen - 1 year, 10 months ago

Nice solution! There was an insignificant typo, though.

Karan Chatrath - 1 year, 10 months ago

Log in to reply

Typo corrected. Thanks for spotting it.

Mark Hennings - 1 year, 10 months ago

I did the same!

Théo Leblanc - 1 year, 10 months ago

This is how l solved it.

Hana Wehbi - 1 year, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...