Integral Craze 2

Level pending

Evaluate 0 π 2 cos ( x ) cos ( x ) + sin ( x ) d x \displaystyle\int_{0}^{\dfrac{\pi}{2}} \dfrac{\sqrt{\cos(x)}}{\sqrt{\cos(x)} + \sqrt{\sin(x)}} dx to six decimal places.


The answer is 0.785398.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Nov 21, 2019

To prove: a b f ( a + b x ) f ( a + b x ) + f ( x ) d x = b a 2 \displaystyle\int_{a}^{b} \dfrac{f(a + b - x)}{f(a + b - x) + f(x)} dx = \dfrac{b - a}{2}

Let I = a b f ( a + b x ) f ( a + b x ) + f ( x ) d x I = \displaystyle\int_{a}^{b} \dfrac{f(a + b - x)}{f(a + b - x) + f(x)} dx and u = a + b x u = a + b - x

I = a b f ( u ) f ( u ) + f ( a + b u ) d u \implies I = \displaystyle\int_{a}^{b} \dfrac{f(u)}{f(u) + f(a + b - u)} du

Since u u is a dummy variable we can replace u u by x x to obtain:

I = a b f ( x ) f ( x ) + f ( a + b x ) d x I = \displaystyle\int_{a}^{b} \dfrac{f(x)}{f(x) + f(a + b - x)} dx

Adding I = a b f ( a + b x ) f ( a + b x ) + f ( x ) d x I = \displaystyle\int_{a}^{b} \dfrac{f(a + b - x)}{f(a + b - x) + f(x)} dx and I = a b f ( x ) f ( x ) + f ( a + b x ) d x I = \displaystyle\int_{a}^{b} \dfrac{f(x)}{f(x) + f(a + b - x)} dx

2 I = a b d x I = b a 2 \implies 2I = \displaystyle\int_{a}^{b} dx \implies \boxed{I = \dfrac{b - a}{2}} .

Now to integrate I = 0 π 2 cos ( x ) cos ( x ) + sin ( x ) d x I = \displaystyle\int_{0}^{\dfrac{\pi}{2}} \dfrac{\sqrt{\cos(x)}}{\sqrt{\cos(x)} + \sqrt{\sin(x)}} dx

Let f ( x ) = sin ( x ) f ( π 2 x ) = cos ( x ) I = 0 π 2 f ( π 2 x ) f ( π 2 x ) + f ( x ) d x f(x) = \sqrt{\sin(x)} \implies f(\dfrac{\pi}{2} - x) = \sqrt{\cos(x)} \implies I = \displaystyle\int_{0}^{\dfrac{\pi}{2}} \dfrac{f(\dfrac{\pi}{2} - x)}{f(\dfrac{\pi}{2} - x) + f(x)} dx

From the above result we obtain I = π 2 0 2 = π 4 0.785398 I = \dfrac{\dfrac{\pi}{2} - 0}{2} = \dfrac{\pi}{4} \approx \boxed{0.785398}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...