Integrating Floors And Ceilings

Calculus Level 2

1 8 1 2 ln 1 x d x = ? \large \int_{\frac{1}{8}}^{\frac{1}{2}} \left \lfloor \ln \left \lceil \dfrac{1}{x} \right \rceil \right \rfloor dx = \, ?

Notations : \lfloor \cdot \rfloor denotes the floor function and \lceil \cdot \rceil denotes the ceiling function .

11 28 \frac{11}{28} 28 11 \frac{28}{11} 21 81 \frac{21}{81} 81 21 \frac{81}{21}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki: Integration of Piecewise Functions

We note that for 1 k > x 1 k + 1 \dfrac 1k > x \ge \dfrac 1{k+1} , where k = 2 , 3 , 4 , . . . 8 k = 2, 3, 4, ... 8 , we have 1 x = k + 1 \left \lceil \dfrac 1x \right \rceil = k+1 and that ln 1 x = ln ( k + 1 ) \left \lfloor \ln \left \lceil \dfrac 1x \right \rceil \right \rfloor = \left \lfloor \ln (k+1) \right \rfloor , which is a constant. Therefore, we have:

1 k + 1 1 k ln 1 x d x = ln ( k + 1 ) ( 1 k 1 k + 1 ) 1 8 1 2 ln 1 x d x = k = 2 7 ln ( k + 1 ) ( 1 k 1 k + 1 ) As ln ( 3 ) = ln ( 4 ) = ln ( 5 ) = ln ( 6 ) = ln ( 7 ) = 1 , ln ( 8 ) = 2 = k = 2 7 ( 1 k 1 k + 1 ) + 1 7 1 8 = 1 2 1 8 + 1 7 1 8 = 11 28 \begin{aligned} \int_\frac 1{k+1}^\frac 1k \left \lfloor \ln \left \lceil \frac 1x \right \rceil \right \rfloor \ dx & = \left \lfloor \ln (k+1) \right \rfloor \left(\frac 1k - \frac 1{k+1} \right) \\ \implies \int_\frac 18^\frac 12 \left \lfloor \ln \left \lceil \frac 1x \right \rceil \right \rfloor \ dx & = \sum_{k=2}^\color{#D61F06}{7} \left \lfloor \ln (k+1) \right \rfloor \left(\frac 1k - \frac 1{k+1} \right) & \small \color{#3D99F6}{\text{As } \lfloor \ln(3) \rfloor =\lfloor \ln(4) \rfloor =\lfloor \ln(5) \rfloor =\lfloor \ln(6) \rfloor = \lfloor \ln(7) \rfloor = 1, \ \lfloor \ln(8) \rfloor = 2} \\ & = \sum_{k=2}^7 \left(\frac 1k - \frac 1{k+1} \right) + \frac 17 - \frac 18 \\ & = \frac 12 - \frac 18 + \frac 17 - \frac 18 \\ & = \boxed{\dfrac {11}{28}} \end{aligned}

Nice explanation.. +1 !!

Sabhrant Sachan - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...