Integral for the End of the Year

Calculus Level 3

0 2017 π 2 cos 2017 ( x ) d x = 2 a ( b ! ) 2 c ! \large \int_{0}^{\frac{2017\pi}{2}} \cos^{2017}(x) \ \mathrm{d}x = \frac{2^a(b!)^2}{c!}

If the equation above holds true for some a , b , c N a, b, c \in \mathbb N , evaluate a + b + c a+b+c .


The answer is 5041.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Lorenzo Calogero
Dec 22, 2017

The integrand function f ( x ) = cos 2017 ( x ) f(x)=\cos^{2017}(x) is periodical with T = 2 π = 4 π 2 T=2\pi=4\frac{\pi}{2} . Therefore:

0 2017 π 2 cos 2017 ( x ) d x = 0 π 2 cos 2017 ( x ) d x \int_{0}^{\frac{2017\pi}{2}} \cos^{2017}(x)\mathrm{d}x = \int_{0}^{\frac{\pi}{2}} \cos^{2017}(x)\mathrm{d}x

since 2017 = 4 504 + 1 2017=4\cdot504 + 1 .

By using the integration reduction formula of cos n ( x ) d x \int\cos^n(x)\mathrm{d}x (which can be easily derived):

0 π 2 cos n ( x ) d x = 1 n sin x cos n 1 ( x ) 0 π / 2 =0 + n 1 n 0 π 2 cos n 2 ( x ) d x \int_{0}^{\frac{\pi}{2}}\cos^n(x)\mathrm{d}x = \underbrace{\left. \frac{1}{n}\sin x \cos^{n-1}(x) \right|_{0}^{\pi/2}}_\text{=0} + \frac{n-1}{n}\int_{0}^{\frac{\pi}{2}}\cos^{n-2}(x)\mathrm{d}x

By applying the formula n 1 2 \frac{n-1}{2} times, we obtain that:

0 π 2 cos n ( x ) d x = ( n 1 ) ( n 3 ) ( n 5 ) n ( n 2 ) ( n 4 ) 0 π 2 cos ( x ) d x = ( n 1 ) ( n 3 ) ( n 5 ) n ( n 2 ) ( n 4 ) = I \int_{0}^{\frac{\pi}{2}}\cos^n(x)\mathrm{d}x = \frac{(n-1)(n-3)(n-5)\cdots}{n(n-2)(n-4)\cdots}\cdot\int_{0}^{\frac{\pi}{2}}\cos(x)\mathrm{d}x=\frac{(n-1)(n-3)(n-5)\cdots}{n(n-2)(n-4)\cdots}=I

With n = 2017 n=2017 , I = 2016 2014 2012 2017 2015 2013 = ( 2016 2014 2012 ) 2 2017 ! = ( 2 1008 1008 ! ) 2 2017 ! = 2 2016 ( 1008 ! ) 2 2017 ! I=\frac{2016\cdot2014\cdot2012\cdots}{2017\cdot2015\cdot2013\cdots}=\frac{(2016\cdot2014\cdot2012\cdots)^2}{2017!}=\frac{(2^{1008}\cdot1008!)^2}{2017!}=\frac{2^{2016}\cdot(1008!)^2}{2017!}

Thus, the solution is: 2016 + 1008 + 2017 = 5041 2016+1008+2017=\boxed{5041}

Can you prove that there exists a unique set of three positive integers (a,b,c) corresponding to your solution? For example, if instead of 2017 we used 17, there would be two possible answers: (16,8,17) and (22,7,17).

D G - 3 years, 5 months ago

Log in to reply

With cos 17 ( x ) \cos^{17}(x) you can write the solution in two different ways since b = 2 k b=2^k , with k = 3 k=3 : 2 a ( b ! ) 2 = 2 16 ( 8 ! ) 2 = 2 16 ( 2 3 ) 2 ( 7 ! ) 2 = 2 22 ( 7 ! ) 2 2^a\cdot(b!)^2=2^{16}\cdot(8!)^2=2^{16}\cdot(2^{3})^2\cdot(7!)^2=2^{22}\cdot(7!)^2 . With cos 2017 ( x ) \cos^{2017}(x) , 1008 2 k k N 1008\neq2^k\ \forall k \in \mathbb{N} , so the solution is unique.

Lorenzo Calogero - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...