Integral from JEE Main 2018

Calculus Level 2

π 2 π 2 sin 2 x 1 + 2 x d x = ? \large \int _{-\frac \pi 2}^\frac \pi 2 \frac{\sin^2x}{1+2^x}\ dx = ?

π 8 \frac{\pi}{8} 4 π 4\pi π 4 \frac{\pi}{4} π 2 \frac{\pi}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 24, 2019

Using the identity a a f ( x ) 1 + c g ( x ) d x = 0 a f ( x ) d x \displaystyle \int_{-a}^a \frac {f(x)}{1+c^{g(x)}}\ dx = \int_0^a f(x)\ dx , where f ( x ) f(x) is even, g ( x ) g(x) is odd and a a and c c are constants (see proof ), we have:

π 2 π 2 sin 2 x 1 + 2 x d x = 0 π 2 sin 2 x d x = 0 π 2 1 cos ( 2 x ) 2 d x = x 2 sin ( 2 x ) 4 0 π 2 = π 4 \begin{aligned} \int_{-\frac \pi 2}^\frac \pi 2 \frac {\sin^2 x}{1+2^x}\ dx & = \int_0^\frac \pi 2 \sin^2 x \ dx \\ & = \int_0^\frac \pi 2 \frac {1-\cos (2x)}2 \ dx \\ & = \frac x2 - \frac {\sin (2x)}4 \ \bigg|_0^\frac \pi 2 \\ & = \boxed{\frac \pi 4} \end{aligned}

Mercedes 2
Oct 12, 2019

Let, I = π 2 π 2 sin 2 x 1 + 2 x d x then, I = π 2 π 2 sin 2 x 1 + 2 x d x a a f ( x ) d x = a a f ( x ) d x 2 I = π 2 π 2 sin 2 x ( 1 1 + 2 x + 1 1 + 2 x ) d x so, I = 1 2 π 2 π 2 sin 2 x ( 1 + 2 x 1 + 2 x ) d x = 1 2 π 2 π 2 sin 2 x d x = 1 4 π 2 π 2 ( 1 cos 2 x ) d x = 1 4 ( x sin 2 x 2 ) π 2 π 2 = π 4 \begin{aligned}\text{Let, I}&=\int_{-\frac\pi2}^{\frac\pi2}\frac{\sin^2x}{1+2^x}\ dx \\ \text{then, I}&=\int_{-\frac\pi2}^{\frac\pi2}\frac{\sin^2x}{1+2^{-x}}\ dx &\because \int_{-a}^af(x)\ dx= \int_{-a}^af(-x)\ dx\\ \therefore 2I&=\int_{-\frac\pi2}^{\frac\pi2}\sin^2x\left(\frac{1}{1+2^x}+\frac{1}{1+2^{-x}}\right)\ dx\\ \text{so, } I&=\frac12\int_{-\frac\pi2}^{\frac\pi2}\sin^2x\left(\frac{1+2^x}{1+2^x}\right)\ dx\\ &= \frac12\int_{-\frac\pi2}^{\frac\pi2}\sin^2x\ dx\\ &= \frac14\int_{-\frac\pi2}^{\frac\pi2}\left(1-\cos{2x}\right)\ dx\\ &= \frac14\left(x-\frac{\sin{2x}}{2}\right)\rvert_{-\frac\pi2}^{\frac\pi2}\\ &= \boxed{\frac\pi4}\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...