Integral ( I was too lazy to make a good name... )

Calculus Level 3

1 2 x x 2 + 4 x + 8 d x = arctan a b arctan c + 1 d ln e f \int _{ 1 }^{ 2 }{ \frac { x }{ { x }^{ 2 }+4x+8 } }\, dx = \arctan { \frac { a }{ b } } -\arctan { c } +\frac { 1 }{ d } \ln { \frac { e }{ f } }

The equation above holds true for some positive integers a a , b b , c c , d d , e , e, and f f , with gcd ( a , b ) = gcd ( e , f ) = 1 \gcd(a,b) = \gcd(e,f) = 1 . What is a + b + c + d + e + f ? a+b+c+d+e+f ?


The answer is 42.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

L e t t = x + 2. 1 2 x x 2 + 4 x + 8 d x = 3 4 t 2 t 2 + 2 2 d t = 3 4 t t 2 + 2 2 d t 3 4 2 t 2 + 2 2 d t 3 4 2 t 2 + 2 2 d t = 2 1 2 T a n 1 4 2 2 1 2 T a n 1 3 2 = T a n 1 2 T a n 1 3 2 . . . . . . . . . . . . . . . . . . . . . . . . . . ( 1 ) L e t u = t 2 . 1 2 d u = t d t a n d = 3 4 t t 2 + 2 2 d t = 1 2 9 16 1 u + 4 d u = 1 2 L n 20 13 . . . . . . . . . . . ( 2 ) 1 2 x x 2 + 4 x + 8 d x = ( 2 ) ( 1 ) = 1 2 L n 20 13 T a n 1 2 T a n 1 3 2 = arctan a b arctan c + 1 d ln e f a + b + c + d + e + f = 3 + 2 + 2 + 2 + 20 + 13 = 42 \displaystyle Let ~t=x+2.~\\ \displaystyle \therefore~ \int _{ 1 }^{ 2 }{ \frac { x }{ { x }^{ 2 }+4x+8 } } dx\\ \displaystyle = \int _{ 3 }^{ 4 }{ \frac { t-2 }{ { t }^{ 2 }+2^2 } } dt \\ \displaystyle = \int _{ 3 }^{ 4 }{ \frac { t }{ { t }^{ 2 }+2^2 } } dt - \int _{ 3 }^{ 4 }{ \frac { 2 }{ { t }^{ 2 }+2^2 } } dt\\ \displaystyle \int _{ 3 }^{ 4 }{ \frac { 2 }{ { t }^{ 2 }+2^2 } } dt\\ \displaystyle =2*\dfrac 1 2 *Tan^{-1}\frac 4 2 - 2*\dfrac 1 2 *Tan^{-1}\frac 3 2 \\ \displaystyle =Tan^{-1} 2 - Tan^{-1}\frac 3 2..........................(1)\\ \displaystyle Let~~ u=t^2. \implies~ \dfrac 1 2 du=t*dt~~and \\ \displaystyle = \int _{ 3 }^{ 4 }{ \frac { t }{ { t }^{ 2 }+2^2 } } dt \\\displaystyle =\dfrac 1 2 * \int _{ 9 }^{ 16 } \dfrac {1 }{ u+4 } du \\\displaystyle =\dfrac 1 2 *Ln \dfrac{20}{13} ...........(2) \\ \displaystyle \therefore~ \int _{ 1 }^{ 2 }{ \frac { x }{ { x }^{ 2 }+4x+8 } } dx \\ \displaystyle =(2)~-~(1)\\ \displaystyle =\dfrac 1 2 *Ln \dfrac{20}{13}~-~Tan^{-1} 2 - Tan^{-1}\frac 3 2 ~=~\arctan { \frac { a }{ b } } -\arctan { c } +\frac { 1 }{ d } \ln { \frac { e }{ f } }\\ \therefore~a+b+c+d+e+f=3+2+2+2+20+13=~~~\Huge \color{#D61F06}{42}

Naren Bhandari
Oct 6, 2017

Let I I be the integration. Then, I = 1 2 x x 2 + 4 x + 8 d x = 1 2 x + 2 2 x 2 + 4 x + 8 d x = 1 2 x + 2 x 2 + 4 x + 8 d x 1 2 2 x 2 + 4 x + 8 d x = 1 2 ln ( x 2 + 4 x + 8 ) 1 2 1 2 2 ( x + 2 ) 2 + 2 2 d x = 1 2 ln ( 20 13 ) [ tan 1 x + 2 2 ] 1 2 \begin{aligned} I & = \displaystyle\int_{1}^{2}\frac{x}{x^2+4x+8}\,dx \\& = \displaystyle\int_{1}^{2}\frac{x+2-2}{x^2+4x+8}\,dx\\& = \displaystyle\int_{1}^{2}\frac{x+2}{x^2+4x+8}\,dx -\displaystyle\int_{1}^{2}\frac{2}{x^2+4x+8}\,dx\\& = \frac{1}{2}\ln(x^2+4x+8)\bigg|_{1}^{2}-\displaystyle\int_{1}^{2}\frac{2}{(x+2)^2+2^2}\,dx\\& = \frac{1}{2}\ln\left(\frac{20}{13}\right) - \left[\tan ^{-1}\frac{x+2}{2}\right]_{1}^{2}\end{aligned} Setting the upper and lower limits we obtain I = tan 1 ( 3 2 ) tan 1 ( 2 ) + 1 2 ln ( 20 13 ) I =\tan ^{-1}\left(\frac{3}{2}\right)-\tan ^{-1}(2) +\frac{1}{2}\ln\left(\frac{20}{13}\right) Thus ,the sum of a + b + c + d + e + f 3 + 2 + 2 + 2 + 20 + 13 42 \small a+b+c+d+e+f \implies 3+2+2+2+20+13\implies \boxed{42}

Natsir Muhammad
Mar 14, 2015

Aniruddha Bagchi
Apr 22, 2019

@Seth Lovelace The best ever possible name to this problem - The Answer to Life, Universe and Everything ! .. sincerely hope that you get the reference.

Ramiel To-ong
Jan 8, 2016

nice solution

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...