∫ 0 2 x 2 + x + 2 x + 1 dx
Find the value of the integral above to three significant digits.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
@Chew-Seong Cheong Minor typo in the last line. It should read tan − 1 7 5 − tan − 1 7 1
Problem Loading...
Note Loading...
Set Loading...
I = ∫ 0 2 x 2 + x + 2 x + 1 d x = 2 1 ∫ 0 2 ( x 2 + x + 2 2 x + 1 + x 2 + x + 2 1 ) d x = 2 ln ( x 2 + x + 2 ) ∣ ∣ ∣ ∣ 0 2 + 2 1 ∫ 0 2 ( x + 2 1 ) 2 + 4 7 1 d x = ln 2 + 7 2 ∫ 0 2 ( 7 2 x + 1 ) 2 + 1 1 d x = ln 2 + 7 1 ∫ tan − 1 7 1 tan − 1 7 5 d θ = ln 2 + 7 1 ( tan − 1 7 5 − tan − 1 7 1 ) ≈ 0 . 9 6 6 Let tan θ = 3 2 x + 1 ⟹ sec 2 θ d θ = 3 2 d x