Integral II

Calculus Level 2

0 1 x e 2 x dx \large \int_0^1 \sqrt{x} e^{2x} \text{dx}

Evaluate the integral above.

Helpful links:


The answer is 2.5123.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jun 19, 2019

I = 0 1 x e 2 x d x Let u 2 = 2 x u d u = d x = 0 2 u 2 e u 2 2 d u Using integration by parts = u e u 2 2 2 0 2 1 2 2 0 2 e u 2 d u Imaginary error function erfi ( x ) = 2 π 0 x e t 2 d t = e 2 2 2 π 8 erfi ( 2 ) and erfi ( 2 ) 3.77312251 2.5123 \begin{aligned} I & = \int_0^1 \sqrt x e^{2x} dx & \small \color{#3D99F6} \text{Let }u^2 = 2x \implies u \ du = dx \\ & = \int_0^{\sqrt 2} \frac {u^2e^{u^2}}{\sqrt 2} du & \small \color{#3D99F6} \text{Using integration by parts} \\ & = \frac {ue^{u^2}}{2\sqrt 2} \bigg|_0^{\sqrt 2} - \frac 1{2\sqrt 2} \color{#3D99F6} \int_0^{\sqrt 2} e^{u^2} du & \small \color{#3D99F6} \text{Imaginary error function }\text{erfi }(x) = \frac 2{\sqrt \pi} \int_0^x e^{t^2} dt \\ & = \frac {e^2}2 - \frac {\sqrt{2\pi}}8\color{#3D99F6} \text{erfi }(\sqrt 2) & \small \color{#3D99F6} \text{and erfi }(\sqrt 2) \approx 3.77312251 \\ & \approx \boxed{2.5123} \end{aligned}


Reference: Imaginary error function

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...