Integral Inside a Limit

Calculus Level 3

lim n n 2 0 1 n x 2018 x + 1 d x = ? \large\lim_{n\to\infty}n^2\int_0^{\frac 1n}x^{2018x+1}\, dx=\, ?


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brian Lie
Jun 12, 2018

L = lim n n 2 0 1 n x 2018 x + 1 d x Let t = 1 n = lim t 0 + 0 t x 2018 x + 1 d x t 2 Using L’H o ˆ pital’s rule = lim t 0 + t 2018 t + 1 2 t = 1 2 ( lim t 0 + t t ) 2018 = 1 2 = 0.5 \begin{aligned} L&=\lim_{n\to\infty}n^2\int_0^{\tfrac 1n}x^{2018x+1}\, dx&\small\color{#3D99F6}\text{Let }t=\frac 1n \\&=\lim_{t\to 0^+}\frac{\displaystyle\int_0^tx^{2018x+1}\, dx}{t^2}&\small\color{#3D99F6}\text{Using L'Hôpital's rule} \\&=\lim_{t\to 0^+}\frac{t^{2018t+1}}{2t} \\&=\frac 12\left(\lim_{t\to\ 0^+}t^{t}\right)^{2018} \\&=\frac 12=\boxed{0.5} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...