Integral Integral5

Calculus Level 3

0 1 log 2 ( 1 x + 1 ) d x = π a b + c log d ( 2 ) \large \int_0^1 \log ^2\left(\frac{1}{x}+1\right) \, dx=\frac{\pi ^a}{b}+c \log ^d(2)

where a a , b b , c c , and d d are positive integers. Submit a + b + c + d a+b+c+d .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 24, 2017

I = 0 1 log 2 ( 1 x + 1 ) d x = 0 1 log 2 ( x + 1 x ) d x = 0 1 ( log ( x + 1 ) log x ) 2 d x = 0 1 ( log 2 ( x + 1 ) 2 log x log ( x + 1 ) + log 2 x ) d x = 0 1 log 2 ( x + 1 ) d x 2 0 1 log x log ( x + 1 ) d x + 0 1 log 2 x d x = 2 log 2 2 4 log 2 + 2 + 4 log 2 4 + π 2 6 + 2 = π 2 6 + 2 log 2 2 \begin{aligned} I & = \int_0^1 \log^2\left(\frac 1x + 1\right) dx = \int_0^1 \log^2\left(\frac {x+1}x \right) dx = \int_0^1 \left(\log(x+1)-\log x \right)^2 dx \\ & = \int_0^1 \left(\log^2(x+1)- 2 \log x \log(x+1) + \log^2 x \right) dx \\ & = \int_0^1 \log^2(x+1)\ dx - 2 \int_0^1 \log x \log(x+1)\ dx + \int_0^1 \log^2 x \ dx \\ & = 2\log^2 2 - 4\log 2 + 2 + 4\log 2 - 4 + \frac {\pi^2}6 + 2 \\ & = \frac {\pi^2}6 + 2\log^2 2 \end{aligned}

Therefore, a + b + c + d = 2 + 6 + 2 + 2 = 12 a+b+c+d = 2+6+2+2 = \boxed{12} .


Notes:

I 1 = 0 1 log 2 ( x + 1 ) d x Let u = x + 1 d u = d x = 1 2 log 2 u d u By integration by parts = log u ( u log u u ) 1 2 1 2 ( log u 1 ) d u = log 2 ( 2 log 2 2 ) [ u log u 2 u ] 1 2 = 2 log 2 2 2 log 2 ( 2 log 2 4 + 2 ) = 2 log 2 2 4 log 2 + 2 \begin{aligned} I_1 & = \int_0^1 \log^2 (x+1) \ dx & \small \color{#3D99F6} \text{Let }u = x+1 \implies du = dx \\ & = \int_1^2 \log^2 u \ du & \small \color{#3D99F6} \text{By integration by parts} \\ & = \log u (u\log u - u)\bigg|_1^2 - \int_1^2 (\log u - 1)\ du \\ & = \log 2 (2\log 2 - 2) - \bigg[u\log u - 2u \bigg]_1^2 \\ & = 2\log^2 2 - 2\log 2 - (2\log 2 - 4 + 2) \\ & = 2\log^2 2 - 4\log 2 + 2 \end{aligned}

I 2 = 0 1 log x log ( x + 1 ) d x By integration by parts = log x ( ( x + 1 ) log ( x + 1 ) x ) 0 1 0 1 ( x + 1 ) log ( x + 1 ) x x d x = 0 0 1 log ( x + 1 ) d x 0 1 log ( x + 1 ) x d x + 0 1 d x = [ ( x + 1 ) log ( x + 1 ) x ] 0 1 0 1 1 x n = 1 ( 1 ) n + 1 x n n d x + 1 = 2 log 2 + 1 0 1 n = 1 ( 1 ) n + 1 x n 1 n d x + 1 = 2 log 2 + 2 n = 1 ( 1 ) n + 1 x n n 2 0 1 = 2 log 2 + 2 ( 1 1 2 1 2 2 + 1 3 2 1 4 2 + 1 5 2 ) = 2 log 2 + 2 ( 1 1 2 + 1 2 2 + 1 3 2 + 2 ( 1 2 2 + 1 4 2 + 1 6 2 + ) ) = 2 log 2 + 2 ( 1 1 2 + 1 2 2 + 1 3 2 + 2 2 2 ( 1 1 2 + 1 2 2 + 1 3 2 + ) ) Riemann’s zeta function ζ ( n ) = k = 1 1 k n = 2 log 2 + 2 ( ζ ( 2 ) 1 2 ( ζ ( 2 ) ) ) and ζ ( 2 ) = k = 1 1 k 2 = π 2 6 = 2 log 2 + 2 π 2 12 \begin{aligned} I_2 & = \int_0^1 \log x \log (x+1) \ dx & \small \color{#3D99F6} \text{By integration by parts} \\ & = \log x ((x+1)\log (x+1)-x)\bigg|_0^1 - \int_0^1 \frac {(x+1)\log (x+1)-x}x dx \\ & = 0 - \int_0^1 \log (x+1) \ dx - {\color{#3D99F6} \int_0^1 \frac {\log (x+1)}x dx} + \int_0^1 dx \\ & = - \bigg[(x+1)\log (x+1) - x\bigg]_0^1 - {\color{#3D99F6} \int_0^1 \frac 1x \sum_{n=1}^\infty \frac {(-1)^{n+1}x^n}n dx} +1 \\ & = - 2\log 2 + 1 - {\color{#3D99F6} \int_0^1 \sum_{n=1}^\infty \frac {(-1)^{n+1}x^{n-1}}n dx} +1 \\ & = - 2\log 2 + 2 - {\color{#3D99F6} \sum_{n=1}^\infty \frac {(-1)^{n+1}x^n}{n^2}\bigg|_0^1} \\ & = - 2\log 2 + 2 - \left(\frac 1{1^2}-\frac 1{2^2}+\frac 1{3^2} - \frac 1{4^2}+\frac 1{5^2} - \cdots \right) \\ & = - 2\log 2 + 2 - \left(\frac 1{1^2}+\frac 1{2^2} +\frac 1{3^2}+ \cdots - 2\left(\frac 1{2^2}+\frac 1{4^2} +\frac 1{6^2}+ \cdots \right) \right) \\ & = - 2\log 2 + 2 - \left({\color{#3D99F6}\frac 1{1^2}+\frac 1{2^2} +\frac 1{3^2}+ \cdots} - \frac 2{2^2} \left({\color{#3D99F6}\frac 1{1^2}+\frac 1{2^2} +\frac 1{3^2}+ \cdots} \right) \right) & \small \color{#3D99F6} \text{Riemann's zeta function }\zeta (n) = \sum_{k=1}^\infty \frac 1{k^n} \\ & = - 2\log 2 + 2 - \left({\color{#3D99F6}\zeta (2)} - \frac 12 \left({\color{#3D99F6}\zeta (2)} \right) \right) & \small \color{#3D99F6} \text{and }\zeta (2) = \sum_{k=1}^\infty \frac 1{k^2} = \frac {\pi^2} 6 \\ & = - 2\log 2 + 2 - \frac {\pi^2}{12} \end{aligned}

I 3 = 0 1 log 2 x d x By integration by parts = log x ( x log x x ) 0 1 0 1 ( log x 1 ) d x = 0 x log x + 2 x 0 1 = 2 \begin{aligned} I_3 & = \int_0^1 \log^2 x \ dx & \small \color{#3D99F6} \text{By integration by parts} \\ & = \log x (x\log x - x)\bigg|_0^1 - \int_0^1 (\log x -1) \ dx \\ & = 0 - x\log x +2 x \ \bigg|_0^1 \\ & = 2 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...