Integral Integral6

Calculus Level 3

0 1 log ( 1 x 3 + 1 ) d x = π a + log ( b ) \large \int_0^1 \log \left(\frac{1}{x^3}+1\right) \, dx=\frac{\pi }{\sqrt{a}}+\log (b)

where a a and b b are positive integers. Submit a + b a+b .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 24, 2017

I = 0 1 log ( 1 x 3 + 1 ) d x = 0 1 log ( x 3 + 1 x 3 ) d x = 0 1 ( log ( x 3 + 1 ) 3 log x ) d x = 0 1 log ( x 3 + 1 ) d x 3 0 1 log x d x By integration by parts. = x log ( x 3 + 1 ) 0 1 0 1 3 x 3 x 3 + 1 d x 3 [ x log x x ] 0 1 = log 2 3 0 1 ( 1 1 x 3 + 1 ) d x + 3 = log 2 3 + 3 0 1 1 ( x + 1 ) ( x 2 x + 1 ) d x + 3 = log 2 + 3 0 1 1 3 ( 1 x + 1 x 2 x 2 x + 1 ) d x = log 2 + 0 1 ( 1 x + 1 2 x 1 2 ( x 2 x + 1 ) + 3 2 ( x 2 x + 1 ) ) d x = log 2 + log ( x + 1 ) log ( x 2 x + 1 ) 2 0 1 + 2 0 1 1 4 3 ( x 1 2 ) 2 + 1 d x Let u = 2 3 ( x 1 2 ) = 2 log 2 + 3 1 3 1 3 1 u 2 + 1 d u = 2 log 2 + 3 tan 1 u 1 3 1 3 = log 4 + 3 × π 3 = π 3 + log 4 \begin{aligned} I & = \int_0^1 \log \left(\frac 1{x^3}+1\right) dx \\ & = \int_0^1 \log \left(\frac {x^3+1}{x^3} \right) dx \\ & = \int_0^1 \left(\log (x^3+1) - 3\log x \right) dx \\ & = {\color{#3D99F6} \int_0^1 \log (x^3+1)\ dx} - 3 \int_0^1 \log x\ dx & \small \color{#3D99F6} \text{By integration by parts.} \\ & = {\color{#3D99F6} x\log(x^3+1)\bigg|_0^1 - \int_0^1 \frac {3x^3}{x^3+1}\ dx} - 3\bigg[x \log x - x\bigg]_0^1 \\ & = {\color{#3D99F6} \log 2 - 3\int_0^1 \left(1 - \frac 1{x^3+1}\right) dx} + 3 \\ & = \log 2 - 3 + 3 \int_0^1 \frac 1{(x+1)(x^2-x+1)} dx + 3 \\ & = \log 2 + 3 \int_0^1 \frac 13 \left(\frac 1{x+1} - \frac {x-2}{x^2-x+1}\right) dx \\ & = \log 2 + \int_0^1 \left(\frac 1{x+1} - \frac {2x-1}{2(x^2-x+1)} + \frac 3{2(x^2-x+1)} \right) dx \\ & = \log 2 + \log (x+1) - \frac {\log (x^2-x+1)} 2 \bigg|_0^1 + \color{#3D99F6} 2 \int_0^1 \frac 1{\frac 43\left(x-\frac 12 \right)^2+1} dx & \small \color{#3D99F6} \text{Let }u = \frac 2{\sqrt 3}\left(x-\frac 12 \right) \\ & = 2\log 2 + \color{#3D99F6} \sqrt 3 \int_{-\frac 1{\sqrt 3}}^{\frac 1{\sqrt 3}} \frac 1{u^2+1} du \\ & = 2\log 2 + \sqrt 3 \tan^{-1} u \ \bigg|_{-\frac 1{\sqrt 3}}^{\frac 1{\sqrt 3}} \\ & = \log 4 + \sqrt 3 \times \frac \pi 3 \\ & = \frac \pi{\sqrt 3} + \log 4 \end{aligned}

a + b = 3 + 4 = 7 \implies a+b = 3+4 = \boxed{7}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...