Integral Integral7

Calculus Level 3

0 1 log ( 1 x 4 + 1 ) d x = π a + b sinh 1 ( 1 ) + log ( c ) \large \int_0^1 \log \left(\frac{1}{x^4}+1\right) \, dx=\frac{\pi }{\sqrt{a}}+\sqrt{b} \sinh ^{-1}(1)+\log (c)

where a a , b b , and c c are positive integers. Submit a + b + c a+b+c .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 24, 2017

I = 0 1 log ( 1 x 4 + 1 ) d x = 0 1 log ( x 4 + 1 x 4 ) d x = 0 1 ( log ( x 4 + 1 ) 4 log x ) d x = 0 1 log ( x 4 + 1 ) d x 4 0 1 log x d x By integration by parts. = x log ( x 4 + 1 ) 0 1 0 1 4 x 4 x 4 + 1 d x 4 [ x log x x ] 0 1 = log 2 4 0 1 ( 1 1 x 4 + 1 ) d x + 4 = log 2 4 + 4 0 1 1 ( x 2 + 2 x + 1 ) ( x 2 2 x + 1 ) d x + 4 = log 2 + 4 0 1 1 4 ( 2 x + 2 x 2 + 2 x + 1 2 x 2 x 2 2 x + 1 ) d x = log 2 + 1 2 0 1 ( 2 x + 2 + 2 x 2 + 2 x + 1 2 x 2 2 x 2 2 x + 1 ) d x = log 2 + 1 2 ln ( x 2 + 2 x + 1 x 2 2 x + 1 ) 0 1 + 0 1 1 x 2 + 2 x + 1 d x + 0 1 1 x 2 2 x + 1 d x = log 2 + 1 2 ln ( 2 + 2 2 2 ) + 2 0 1 1 2 ( x + 1 2 ) 2 + 1 d x + 2 0 1 1 2 ( x 1 2 ) 2 + 1 d x = log 2 + 1 2 ln ( 3 + 2 2 ) + 2 1 2 + 1 1 x 2 + 1 d x + 2 1 2 1 1 x 2 + 1 d x = log 2 + 1 2 ln ( 1 + 2 ) 2 + 2 ( tan 1 ( 2 + 1 ) tan 1 1 + tan 1 ( 2 1 ) tan 1 ( 1 ) ) = log 2 + 2 ln ( 1 + 2 ) + 2 ( tan 1 2 + 1 + 2 1 1 ( 2 + 1 ) ( 2 1 ) π 4 + π 4 ) Note that sinh 1 x = ln ( x + x 2 + 1 ) = log 2 + 2 sinh 1 ( 1 ) + 2 × π 2 = π 2 + 2 sinh 1 ( 1 ) + log 2 \begin{aligned} I & = \int_0^1 \log \left(\frac 1{x^4}+1\right) dx \\ & = \int_0^1 \log \left(\frac {x^4+1}{x^4} \right) dx \\ & = \int_0^1 \left(\log (x^4+1) - 4\log x \right) dx \\ & = {\color{#3D99F6} \int_0^1 \log (x^4+1)\ dx} - 4 \int_0^1 \log x\ dx & \small \color{#3D99F6} \text{By integration by parts.} \\ & = {\color{#3D99F6} x\log(x^4+1)\bigg|_0^1 - \int_0^1 \frac {4x^4}{x^4+1}\ dx} - 4\bigg[x \log x - x\bigg]_0^1 \\ & = {\color{#3D99F6} \log 2 - 4\int_0^1 \left(1 - \frac 1{x^4+1}\right) dx} + 4 \\ & = \log 2 - 4 + 4 \int_0^1 \frac 1{(x^2+\sqrt 2x+1)(x^2-\sqrt 2x+1)} dx + 4 \\ & = \log 2 + 4 \int_0^1 \frac 14 \left(\frac {\sqrt 2x+2}{x^2+\sqrt 2x+1}-\frac {\sqrt 2x-2}{x^2-\sqrt 2x+1}\right) dx \\ & = \log 2 + \frac 1{\sqrt 2} \int_0^1 \left(\frac {2x+\sqrt 2 + \sqrt 2}{x^2+\sqrt 2x+1}-\frac {2x-\sqrt 2 - \sqrt 2}{x^2-\sqrt 2x+1}\right) dx \\ & = \log 2 + \frac 1{\sqrt 2} \ln \left(\frac {x^2+\sqrt 2x+1}{x^2-\sqrt 2x+1} \right)\bigg|_0^1 + \int_0^1 \frac 1{x^2+\sqrt 2x+1} dx + \int_0^1 \frac 1{x^2-\sqrt 2x+1} dx \\ & = \log 2 + \frac 1{\sqrt 2} \ln \left(\frac {2+\sqrt 2}{2-\sqrt 2} \right) + 2 \int_0^1 \frac 1{2\left(x+\frac 1{\sqrt 2}\right)^2+1} dx + 2 \int_0^1 \frac 1{2\left(x-\frac 1{\sqrt 2}\right)^2+1} dx \\ & = \log 2 + \frac 1{\sqrt 2} \ln \left(3+2\sqrt 2 \right) + \sqrt 2 \int_1^{\sqrt 2+1} \frac 1{x^2+1} dx + \sqrt 2 \int_{-1}^{\sqrt 2-1} \frac 1{x^2+1} dx \\ & = \log 2 + \frac 1{\sqrt 2} \ln \left(1+\sqrt 2 \right)^2 + \sqrt 2 \left({\color{#3D99F6}\tan^{-1} (\sqrt 2+1)} - \tan^{-1} 1 + {\color{#3D99F6}\tan^{-1} (\sqrt 2-1)} - \tan^{-1} (-1)\right) \\ & = \log 2 + \sqrt 2 {\color{#D61F06} \ln \left(1+\sqrt 2 \right)} + \sqrt 2 \left({\color{#3D99F6} \tan^{-1} \frac {\sqrt 2+1 + \sqrt 2-1}{1-(\sqrt 2+1)(\sqrt 2-1)}} - \frac \pi 4 + \frac \pi 4 \right) & \small \color{#D61F06} \text{Note that }\sinh^{-1} x = \ln \left(x+\sqrt{x^2+1}\right) \\ & = \log 2 + \sqrt 2 {\color{#D61F06}\sinh^{-1}(1)} + \sqrt 2 \times \frac \pi 2 \\ & = \frac \pi {\sqrt 2} + \sqrt 2 \sinh^{-1}(1) + \log 2 \end{aligned}

Therefore, a + b + c = 2 + 2 + 2 = 6 a+b+c = 2+2+2 = \boxed{6}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...