Find the integer for which above limit is a finite non-zero number.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
For all x ∈ R we have that cos ( x ) = n = 0 ∑ ∞ ( 2 n ) ! ( − 1 ) n x 2 n = 1 − 2 ! x 2 + 4 ! x 4 − O ( x 6 )
and e x = n = 0 ∑ ∞ n ! x n = 1 + x + 2 ! x 2 + 3 ! x 3 + O ( x 4 ) .
Thus 1 − cos ( x ) = 2 x 2 − 2 4 x 4 + O ( x 6 ) = 2 x 2 ( 1 − 1 2 x 2 + O ( x 4 ) ) and
cos ( x ) − e x = ( 1 − 2 ! x 2 + 4 ! x 4 − O ( x 6 ) ) − ( 1 + x + 2 ! x 2 + 3 ! x 3 + 4 ! x 4 + O ( x 5 ) ) =
− x − x 2 − 6 x 3 − O ( x 5 ) = − x ( 1 + x + O ( x 2 ) ) .
Thus x n ( 1 − cos ( x ) ) ( cos ( x ) − e x ) = 2 x n − x 3 ( 1 + x + O ( x 2 ) ) = − 2 1 x 3 − n ( 1 + x + O ( x 2 ) ) .
For n < 3 the given limit will then be 0 , and for n > 3 the limit will not exist. So only for n = 3 will the limit be a finite non-zero number, namely − 2 1 .