Integral limit

Calculus Level 3

lim x 0 ( 1 cos x ) ( cos x e x ) x n \large \displaystyle \lim_{x \rightarrow 0} \dfrac{ ( 1 - \cos x)(\cos x - e^x)}{x^{\color{#3D99F6}n}}

Find the integer n \color{#3D99F6}n for which above limit is a finite non-zero number.

3 2 4 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

For all x R x \in \mathbb{R} we have that cos ( x ) = n = 0 ( 1 ) n x 2 n ( 2 n ) ! = 1 x 2 2 ! + x 4 4 ! O ( x 6 ) \cos(x) = \displaystyle\sum_{n=0}^{\infty} \dfrac{(-1)^{n}x^{2n}}{(2n)!} = 1 - \dfrac{x^{2}}{2!} + \dfrac{x^{4}}{4!} - O(x^{6})

and e x = n = 0 x n n ! = 1 + x + x 2 2 ! + x 3 3 ! + O ( x 4 ) e^{x} = \displaystyle\sum_{n=0}^{\infty} \dfrac{x^{n}}{n!} = 1 + x + \dfrac{x^{2}}{2!} + \dfrac{x^{3}}{3!} + O(x^{4}) .

Thus 1 cos ( x ) = x 2 2 x 4 24 + O ( x 6 ) = x 2 2 ( 1 x 2 12 + O ( x 4 ) ) 1 - \cos(x) = \dfrac{x^{2}}{2} - \dfrac{x^{4}}{24} + O(x^{6}) = \dfrac{x^{2}}{2}\left(1 - \dfrac{x^{2}}{12} + O(x^{4}) \right) and

cos ( x ) e x = ( 1 x 2 2 ! + x 4 4 ! O ( x 6 ) ) ( 1 + x + x 2 2 ! + x 3 3 ! + x 4 4 ! + O ( x 5 ) ) = \cos(x) - e^{x} = \left(1 - \dfrac{x^{2}}{2!} + \dfrac{x^{4}}{4!} - O(x^{6}) \right) - \left(1 + x + \dfrac{x^{2}}{2!} + \dfrac{x^{3}}{3!} + \dfrac{x^{4}}{4!} + O(x^{5}) \right) =

x x 2 x 3 6 O ( x 5 ) = x ( 1 + x + O ( x 2 ) ) . - x - x^{2} - \dfrac{x^{3}}{6} - O(x^{5}) = -x(1 + x + O(x^{2})).

Thus ( 1 cos ( x ) ) ( cos ( x ) e x ) x n = x 3 ( 1 + x + O ( x 2 ) ) 2 x n = 1 2 x 3 n ( 1 + x + O ( x 2 ) ) . \dfrac{(1 - \cos(x))(\cos(x) - e^{x})}{x^{n}} = \dfrac{-x^{3}(1 + x + O(x^{2}))}{2x^{n}} = -\dfrac{1}{2}x^{3 - n}(1 + x + O(x^{2})).

For n < 3 n \lt 3 the given limit will then be 0 , 0, and for n > 3 n \gt 3 the limit will not exist. So only for n = 3 n = \boxed{3} will the limit be a finite non-zero number, namely 1 2 . -\dfrac{1}{2}.

찬홍 민
Dec 18, 2015

1-cosx has "quadratic" power, and cosx-e^x has "linear" power, therefore, in order for the limit to exist, the denominator should have at least "cubic" power. What an awkward solution... but for this type of question where finding the minimum value of n is required, real calculation is not necessary, 1-cosx has "quadratic" power because it has non-zero limit iff n=2 because 1-cosx=2sin^2(x/2) and same logic is applied for the "linear" power.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...