Integral of a defined function-

Calculus Level 5

Let a function f ( x ) f(x) be defined as:

f ( x ) = r = 0 x r 2 ( x r ) . f(x) = \displaystyle\sum_{r=0}^x r^{2}~\dbinom{x}{r}.

Find the value of

24 0 1 f ( x ) 2 x d x . 24 \displaystyle\int_0^{1} \dfrac{f(x)}{2^{x}} dx.


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Avineil Jain
Jun 14, 2014

f ( x ) = r = 0 x r 2 ( x r ) f(x) = \displaystyle\sum_{r=0}^x r^{2}~\dbinom{x}{r}

f ( x ) = r = 0 x ( r ( r 1 ) + r ) ( x r ) f(x) = \displaystyle\sum_{r=0}^x (r(r-1) + r) ~\dbinom{x}{r}

f ( x ) = r = 0 x r ( r 1 ) ( x r ) + r = 0 x r ( x r ) f(x) = \displaystyle\sum_{r=0}^x r(r-1)\dbinom{x}{r} + \displaystyle\sum_{r=0}^x r\dbinom{x}{r}

We now use the famous identity -

( n r ) = n r ( n 1 r 1 ) \dbinom{n}{r} = \dfrac{n}{r}~\dbinom{n-1}{r-1}

f ( x ) = r = 2 x x ( x 1 ) ( x 2 r 2 ) + r = 1 x x ( x 1 r 1 ) f(x) = \displaystyle\sum_{r=2}^x x(x-1) \dbinom{x-2}{r-2} + \displaystyle\sum_{r=1}^x x\dbinom{x-1}{r-1}

f ( x ) = x ( x 1 ) 2 x 2 + x 2 x 1 f(x) = x(x-1)~2^{x-2} + x~2^{x-1}

f ( x ) = x ( x + 1 ) 2 x 2 f(x) = x(x+1)~2^{x-2}

24 0 1 f ( x ) 2 x = 24 0 1 x ( x + 1 ) 4 24 \displaystyle\int_{0}^{1} \dfrac{f(x)}{2^{x}} = 24 \displaystyle\int_{0}^{1} \dfrac{x(x+1)}{4}

24 0 1 f ( x ) 2 x = 5 24 \displaystyle\int_{0}^{1} \dfrac{f(x)}{2^{x}} = 5

@Avineil Jain @Calvin Lin Is the Binomial Coefficient defined for non-integral values of x x ?

We generally use Γ ( 1 + x ) = 0 t x e t d t \Gamma(1+x) =\displaystyle\int_{0}^{\infty} t^x e^{-t}\mathrm{d}t instead of x ! x! for non-integral values of x x , don't we?

Pratik Shastri - 6 years, 8 months ago
Pradeep Ch
Jun 14, 2014

( 1 + t ) x = ( x 0 ) + ( x 1 ) t + ( x 2 ) t 2 + ( x 3 ) t 3 + . . . . ( x x ) t x d i f f e r e n t i a t e i t w . r . t t . x ( 1 + t ) x 1 = ( x 1 ) + 2 ( x 2 ) t + 3 ( x 3 ) t 2 + . . . . x ( x x ) t x 1 m u l t i p l y L H S a n d R H S b y t . x t ( 1 + t ) x = ( x 1 ) t + 2 ( x 2 ) t 2 + 3 ( x 3 ) t 3 + . . . . x ( x x ) t x a g a i n d i f f e r e n t i a t e w . r . t t . x [ ( 1 + t ) x 1 + t ( x 1 ) ( 1 + t ) x 2 ] = ( x 1 ) + 2 2 ( x 2 ) t + 3 2 ( x 3 ) t 2 + . . . . x 2 ( x x ) t x 1 p u t t = 1 x [ ( 2 ) x 1 + ( x 1 ) ( 2 ) x 2 ] = f ( x ) s o , f ( x ) 2 x = x [ 1 2 + ( x 1 ) 1 4 ] = x ( x + 1 ) 4 s o , 24 0 1 f ( x ) 2 x = 24 0 1 x ( x + 1 ) 4 = 5 { (1+t) }^{ x }\quad =\quad \left( \begin{matrix} x \\ 0 \end{matrix} \right) \quad +\quad \left( \begin{matrix} x \\ 1 \end{matrix} \right) t\quad +\quad \left( \begin{matrix} x \\ 2 \end{matrix} \right) { t }^{ 2 }\quad +\quad \left( \begin{matrix} x \\ 3 \end{matrix} \right) { t }^{ 3 }\quad +\quad ....\quad \left( \begin{matrix} x \\ x \end{matrix} \right) { t }^{ x }\\ differentiate\quad it\quad w.r.t\quad t.\\ x{ (1+t) }^{ x-1 }\quad =\quad \left( \begin{matrix} x \\ 1 \end{matrix} \right) \quad +\quad 2\left( \begin{matrix} x \\ 2 \end{matrix} \right) t\quad +\quad 3\left( \begin{matrix} x \\ 3 \end{matrix} \right) { t }^{ 2 }\quad +\quad ....\quad x\left( \begin{matrix} x \\ x \end{matrix} \right) { t }^{ x-1 }\\ multiply\quad LHS\quad and\quad RHS\quad by\quad t.\\ xt{ (1+t) }^{ x }\quad =\quad \left( \begin{matrix} x \\ 1 \end{matrix} \right) t\quad +\quad 2\left( \begin{matrix} x \\ 2 \end{matrix} \right) { t }^{ 2 }\quad +\quad 3\left( \begin{matrix} x \\ 3 \end{matrix} \right) { t }^{ 3 }\quad +\quad ....\quad x\left( \begin{matrix} x \\ x \end{matrix} \right) { t }^{ x }\\ again\quad differentiate\quad w.r.t\quad t.\\ x[{ (1+t) }^{ x-1 }\quad +\quad t(x-1){ (1+t) }^{ x-2 }]\quad =\quad \quad \left( \begin{matrix} x \\ 1 \end{matrix} \right) \quad +\quad { 2 }^{ 2 }\left( \begin{matrix} x \\ 2 \end{matrix} \right) t\quad +\quad { 3 }^{ 2 }\left( \begin{matrix} x \\ 3 \end{matrix} \right) { t }^{ 2 }\quad +\quad ....\quad { x }^{ 2 }\left( \begin{matrix} x \\ x \end{matrix} \right) { t }^{ x-1 }\\ put\quad t=1\\ x[{ (2) }^{ x-1 }\quad +\quad (x-1){ (2) }^{ x-2 }]\quad =\quad f(x)\\ \\ so,\quad \frac { f(x) }{ { 2 }^{ x } } \quad =\quad x\left[ \frac { 1 }{ 2 } \quad +\quad (x-1)\frac { 1 }{ 4 } \right] \quad =\quad \frac { x(x+1) }{ 4 } \\ so,\quad 24\int _{ 0 }^{ 1 }{ \frac { f(x) }{ { 2 }^{ x } } } \quad =\quad 24\int _{ 0 }^{ 1 }{ \frac { x(x+1) }{ 4 } } =\quad 5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...