Let a function f ( x ) be defined as:
f ( x ) = r = 0 ∑ x r 2 ( r x ) .
Find the value of
2 4 ∫ 0 1 2 x f ( x ) d x .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
@Avineil Jain @Calvin Lin Is the Binomial Coefficient defined for non-integral values of x ?
We generally use Γ ( 1 + x ) = ∫ 0 ∞ t x e − t d t instead of x ! for non-integral values of x , don't we?
( 1 + t ) x = ( x 0 ) + ( x 1 ) t + ( x 2 ) t 2 + ( x 3 ) t 3 + . . . . ( x x ) t x d i f f e r e n t i a t e i t w . r . t t . x ( 1 + t ) x − 1 = ( x 1 ) + 2 ( x 2 ) t + 3 ( x 3 ) t 2 + . . . . x ( x x ) t x − 1 m u l t i p l y L H S a n d R H S b y t . x t ( 1 + t ) x = ( x 1 ) t + 2 ( x 2 ) t 2 + 3 ( x 3 ) t 3 + . . . . x ( x x ) t x a g a i n d i f f e r e n t i a t e w . r . t t . x [ ( 1 + t ) x − 1 + t ( x − 1 ) ( 1 + t ) x − 2 ] = ( x 1 ) + 2 2 ( x 2 ) t + 3 2 ( x 3 ) t 2 + . . . . x 2 ( x x ) t x − 1 p u t t = 1 x [ ( 2 ) x − 1 + ( x − 1 ) ( 2 ) x − 2 ] = f ( x ) s o , 2 x f ( x ) = x [ 2 1 + ( x − 1 ) 4 1 ] = 4 x ( x + 1 ) s o , 2 4 ∫ 0 1 2 x f ( x ) = 2 4 ∫ 0 1 4 x ( x + 1 ) = 5
Problem Loading...
Note Loading...
Set Loading...
f ( x ) = r = 0 ∑ x r 2 ( r x )
f ( x ) = r = 0 ∑ x ( r ( r − 1 ) + r ) ( r x )
f ( x ) = r = 0 ∑ x r ( r − 1 ) ( r x ) + r = 0 ∑ x r ( r x )
We now use the famous identity -
( r n ) = r n ( r − 1 n − 1 )
f ( x ) = r = 2 ∑ x x ( x − 1 ) ( r − 2 x − 2 ) + r = 1 ∑ x x ( r − 1 x − 1 )
f ( x ) = x ( x − 1 ) 2 x − 2 + x 2 x − 1
f ( x ) = x ( x + 1 ) 2 x − 2
2 4 ∫ 0 1 2 x f ( x ) = 2 4 ∫ 0 1 4 x ( x + 1 )
2 4 ∫ 0 1 2 x f ( x ) = 5