If ∫ m + 1 m + 2 n = 1 ∑ ∞ x n n 2 d x = m 2 ( m + 1 ) 2 m 4 + 2 m 3 + 4 m 2 + 5 m + 1 , for x > 1 and m > 0 , find the value of m to seven decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I hope you know there's already a proof on this special sums on a generalised aspect n = 1 ∑ ∞ k n n x = ( k − 1 ) x + 1 k A n ( k ) where A n ( k ) is the n th Eulerian polynomial.
Let x > 1 and m > 0 .
∑ n = 1 ∞ x n n = x 1 ( 1 + x 1 + x 2 1 + x 3 1 + . . . ) + x 2 1 ( 1 + x 1 + x 2 1 + x 3 1 + . . . ) + x 3 1 ( 1 + x 1 + x 2 1 + x 3 1 + . . . ) + . . . =
( x − 1 x ) ( x 1 ) ( x − 1 x ) = ( x − 1 ) 2 x
S ( x ) = ∑ n = 1 ∞ x n n 2 = ∑ j = 1 ∞ ( ∑ n = j ∞ x n n ) = ∑ j = 1 ∞ ( x j j + x j + 1 j + 1 + x j + 2 j + 2 + . . . ) = ( x − 1 x ) ∑ j = 1 ∞ x j j + ( x − 1 ) 2 x ∑ j = 1 ∞ x j 1 = ( x − 1 x ) ( ( x − 1 ) 2 x ) + ( x − 1 ) 2 x ( x − 1 1 ) = ( x − 1 ) 3 x 2 + x
For ∫ m + 1 m + 2 S ( x ) d x = ∫ m + 1 m + 2 ( x − 1 ) 3 x 2 + x
Let u = x − 1 ⟹ d u = d x ⟹ ∫ m + 1 m + 2 S ( x ) d x = ∫ m m + 1 ( u 1 + u 2 3 + u 3 2 ) d u = ( ln ( u ) − u 3 − u 2 1 ) ∣ m m + 1 = ln ( m m + 1 ) + ( m + 1 ) 2 m 2 3 m 2 + 5 m + 1 = m 2 ( m + 1 ) 2 m 4 + 2 m 3 + 4 m 2 + 5 m + 1 =
( m + 1 ) 2 m 2 m 4 + 2 m 3 + m 2 + 3 m 2 + 5 m + 1 = ( m + 1 ) 2 m 2 ( m + 1 ) 2 m 2 + 3 m 2 + 5 m + 1 = 1 + ( m + 1 ) 2 m 2 3 m 2 + 5 m + 1
⟹ ln ( m m + 1 ) = 1 ⟹ m m + 1 = e ⟹ m = e − 1 1 = 0 . 5 8 1 9 7 6 7 to seven decimal places.
Problem Loading...
Note Loading...
Set Loading...
Consider the following series for ∣ u ∣ < 1 .
n = 0 ∑ ∞ u n n = 1 ∑ ∞ n u n − 1 n = 1 ∑ ∞ n u n n = 1 ∑ ∞ n 2 u n − 1 n = 1 ∑ ∞ n 2 u n n = 1 ∑ ∞ x n n 2 = 1 − u 1 = ( 1 − u ) 2 1 = ( 1 − u ) 2 u = ( 1 − u ) 3 1 + u = ( 1 − u ) 3 u ( 1 + u ) = ( x − 1 ) 3 x 2 + x Differentiate both sides w.r.t. u . Multiplied both sides by u . Differentiate both sides w.r.t. u . Multiplied both sides by u . Replace u with x 1
Therefore, we have:
I = ∫ m + 1 m + 2 n = 1 ∑ ∞ x n n 2 d x = ∫ m + 1 m + 2 ( x − 1 ) 3 x 2 + x d x = ∫ m + 1 m + 2 ( x − 1 ) 3 x 2 − 2 x + 1 + 3 x − 3 + 2 d x = ∫ m + 1 m + 2 ( x − 1 1 + ( x − 1 ) 2 3 + ( x − 1 ) 3 2 ) d x = ln ( x − 1 ) − x − 1 3 − ( x − 1 ) 2 1 ∣ ∣ ∣ ∣ m + 1 m + 2 = ln ( x − 1 ) − ( x − 1 ) 2 3 x − 2 ∣ ∣ ∣ ∣ m + 1 m + 2 = ln ( m m + 1 ) − ( m + 1 ) 2 3 m + 4 + m 2 3 m + 1 = ln ( m m + 1 ) + m 2 ( m + 1 ) 2 3 m 2 + 5 m + 1 = ln ( m m + 1 ) + m 2 ( m + 1 ) 2 m 2 + 2 m 3 + 4 m 2 + 5 m + 1 − m 2 ( m + 1 ) 2 m 2 + 2 m 3 + m 2 = ln ( m m + 1 ) + m 2 ( m + 1 ) 2 m 2 + 2 m 3 + 4 m 2 + 5 m + 1 − 1
This implies that:
ln ( m m + 1 ) m m + 1 ⟹ m = 1 = e = e − 1 1 ≈ 0 . 5 8 1 9 7 6 7