Integral of a sum 2

Calculus Level 4

If m + 1 m + 2 n = 1 n 2 x n d x = m 4 + 2 m 3 + 4 m 2 + 5 m + 1 m 2 ( m + 1 ) 2 \displaystyle \int_{m + 1}^{m + 2} \sum_{n = 1}^{\infty} \dfrac{n^2}{x^n} dx = \dfrac{m^4 + 2 m^3 + 4m^2 + 5 m + 1}{m^2(m + 1)^2} , for x > 1 x > 1 and m > 0 m > 0 , find the value of m m to seven decimal places.


The answer is 0.5819767.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Consider the following series for u < 1 |u| < 1 .

n = 0 u n = 1 1 u Differentiate both sides w.r.t. u . n = 1 n u n 1 = 1 ( 1 u ) 2 Multiplied both sides by u . n = 1 n u n = u ( 1 u ) 2 Differentiate both sides w.r.t. u . n = 1 n 2 u n 1 = 1 + u ( 1 u ) 3 Multiplied both sides by u . n = 1 n 2 u n = u ( 1 + u ) ( 1 u ) 3 Replace u with 1 x n = 1 n 2 x n = x 2 + x ( x 1 ) 3 \begin{aligned} \sum_{\color{#3D99F6}n=0}^\infty u^n & = \frac 1{1-u} & \small \color{#3D99F6} \text{Differentiate both sides w.r.t. }u. \\ \sum_{\color{#D61F06}n=1}^\infty nu^{n-1} & = \frac 1{(1-u)^2} & \small \color{#3D99F6} \text{Multiplied both sides by }u. \\ \sum_{n=1}^\infty nu^n & = \frac u{(1-u)^2} & \small \color{#3D99F6} \text{Differentiate both sides w.r.t. }u. \\ \sum_{n=1}^\infty n^2u^{n-1} & = \frac {1+u}{(1-u)^3} & \small \color{#3D99F6} \text{Multiplied both sides by }u. \\ \sum_{n=1}^\infty n^2u^n & = \frac {u(1+u)}{(1-u)^3} & \small \color{#3D99F6} \text{Replace }u \text{ with }\frac 1x \\ \sum_{n=1}^\infty \frac {n^2}{x^n} & = \frac {x^2+x}{(x-1)^3} \end{aligned}

Therefore, we have:

I = m + 1 m + 2 n = 1 n 2 x n d x = m + 1 m + 2 x 2 + x ( x 1 ) 3 d x = m + 1 m + 2 x 2 2 x + 1 + 3 x 3 + 2 ( x 1 ) 3 d x = m + 1 m + 2 ( 1 x 1 + 3 ( x 1 ) 2 + 2 ( x 1 ) 3 ) d x = ln ( x 1 ) 3 x 1 1 ( x 1 ) 2 m + 1 m + 2 = ln ( x 1 ) 3 x 2 ( x 1 ) 2 m + 1 m + 2 = ln ( m + 1 m ) 3 m + 4 ( m + 1 ) 2 + 3 m + 1 m 2 = ln ( m + 1 m ) + 3 m 2 + 5 m + 1 m 2 ( m + 1 ) 2 = ln ( m + 1 m ) + m 2 + 2 m 3 + 4 m 2 + 5 m + 1 m 2 ( m + 1 ) 2 m 2 + 2 m 3 + m 2 m 2 ( m + 1 ) 2 = ln ( m + 1 m ) + m 2 + 2 m 3 + 4 m 2 + 5 m + 1 m 2 ( m + 1 ) 2 1 \begin{aligned} I & = \int_{m+1}^{m+2} \sum_{n=1}^\infty \frac {n^2}{x^n} dx \\ & = \int_{m+1}^{m+2} \frac {x^2+x}{(x-1)^3} dx \\ & = \int_{m+1}^{m+2} \frac {x^2-2x+1+3x-3+2}{(x-1)^3} dx \\ & = \int_{m+1}^{m+2} \left(\frac 1{x-1} + \frac 3{(x-1)^2} + \frac 2{(x-1)^3} \right) dx \\ & = \ln (x-1) - \frac 3{x-1} - \frac 1{(x-1)^2} \ \bigg|_{m+1}^{m+2} \\ & = \ln (x-1) - \frac {3x-2}{(x-1)^2} \ \bigg|_{m+1}^{m+2} \\ & = \ln \left(\frac {m+1}m \right) - \frac {3m+4}{(m+1)^2} + \frac {3m+1}{m^2} \\ & = \ln \left(\frac {m+1}m \right) + \frac {3m^2+5m+1}{m^2(m+1)^2} \\ & = \ln \left(\frac {m+1}m \right) + \frac {{\color{#3D99F6}m^2+2m^3+4m^2}+5m+1}{m^2(m+1)^2} - \frac {\color{#D61F06}m^2+2m^3+m^2}{m^2(m+1)^2} \\ & = {\color{#D61F06}\ln \left(\frac {m+1}m \right)} + \frac {m^2+2m^3+4m^2+5m+1}{m^2(m+1)^2} \color{#D61F06} - 1 \end{aligned}

This implies that:

ln ( m + 1 m ) = 1 m + 1 m = e m = 1 e 1 0.5819767 \begin{aligned} \ln \left(\frac {m+1}m \right) & = 1 \\\frac {m+1}m & = e \\ \implies m & = \frac 1{e-1} \approx \boxed{0.5819767} \end{aligned}

I hope you know there's already a proof on this special sums on a generalised aspect n = 1 n x k n = k A n ( k ) ( k 1 ) x + 1 \displaystyle\sum_{n=1}^\infty\dfrac{n^x}{k^n}=\dfrac{kA_n(k)}{(k-1)^{x+1}} where A n ( k ) A_n(k) is the n n th Eulerian polynomial.

Syed Shahabudeen - 3 years, 4 months ago
Rocco Dalto
Jan 3, 2018

Let x > 1 x > 1 and m > 0 m > 0 .

n = 1 n x n = 1 x ( 1 + 1 x + 1 x 2 + 1 x 3 + . . . ) + 1 x 2 ( 1 + 1 x + 1 x 2 + 1 x 3 + . . . ) + 1 x 3 ( 1 + 1 x + 1 x 2 + 1 x 3 + . . . ) + . . . = \sum_{n = 1}^{\infty} \dfrac{n}{x^n} = \dfrac{1}{x}(1 + \dfrac{1}{x} + \dfrac{1}{x^2} + \dfrac{1}{x^3} + ... ) + \dfrac{1}{x^2}(1 + \dfrac{1}{x} + \dfrac{1}{x^2} + \dfrac{1}{x^3} + ...) +\dfrac{1}{x^3}(1 + \dfrac{1}{x} + \dfrac{1}{x^2} + \dfrac{1}{x^3} + ...) + ... =

( x x 1 ) ( 1 x ) ( x x 1 ) = x ( x 1 ) 2 (\dfrac{x}{x - 1})(\dfrac{1}{x})(\dfrac{x}{x - 1}) = \dfrac{x}{(x - 1)^2}

S ( x ) = n = 1 n 2 x n = j = 1 ( n = j n x n ) = S(x) = \sum_{n = 1}^{\infty} \dfrac{n^2}{x^n} = \sum_{j = 1}^{\infty} (\sum_{n = j}^{\infty} \dfrac{n}{x^n}) = j = 1 ( j x j + j + 1 x j + 1 + j + 2 x j + 2 + . . . ) = \sum_{j = 1}^{\infty} (\dfrac{j}{x^j} + \dfrac{j + 1}{x^{j + 1}} + \dfrac{j + 2}{x^{j + 2}} + ... ) = ( x x 1 ) j = 1 j x j + x ( x 1 ) 2 j = 1 1 x j = ( x x 1 ) ( x ( x 1 ) 2 ) + x ( x 1 ) 2 ( 1 x 1 ) = x 2 + x ( x 1 ) 3 (\dfrac{x}{x - 1}) \sum_{j = 1}^{\infty} \dfrac{j}{x^j} + \dfrac{x}{(x - 1)^2} \sum_{j = 1}^{\infty} \dfrac{1}{x^j} = (\dfrac{x}{x - 1}) (\dfrac{x}{(x - 1)^2}) + \dfrac{x}{(x - 1)^2} (\dfrac{1}{x - 1}) = \dfrac{x^2 + x}{(x - 1)^3}

For m + 1 m + 2 S ( x ) d x = m + 1 m + 2 x 2 + x ( x 1 ) 3 \int_{m + 1}^{m + 2} S(x) dx = \int_{m + 1}^{m + 2} \dfrac{x^2 + x}{(x - 1)^3}

Let u = x 1 d u = d x m + 1 m + 2 S ( x ) d x = m m + 1 ( 1 u + 3 u 2 + 2 u 3 ) d u = u = x - 1 \implies du = dx \implies \int_{m + 1}^{m + 2} S(x) dx = \int_{m}^{m + 1} (\dfrac{1}{u} + \dfrac{3}{u^2} + \dfrac{2}{u^3}) du = ( ln ( u ) 3 u 1 u 2 ) m m + 1 = ln ( m + 1 m ) + 3 m 2 + 5 m + 1 ( m + 1 ) 2 m 2 = m 4 + 2 m 3 + 4 m 2 + 5 m + 1 m 2 ( m + 1 ) 2 = (\ln(u) - \dfrac{3}{u} - \dfrac{1}{u^2})|_{m}^{m + 1} = \ln(\dfrac{m + 1}{m}) + \dfrac{3 m^2 + 5 m + 1}{(m + 1)^2 m^2} = \dfrac{m^4 + 2 m^3 + 4m^2 + 5 m + 1}{m^2(m + 1)^2} =

m 4 + 2 m 3 + m 2 + 3 m 2 + 5 m + 1 ( m + 1 ) 2 m 2 = ( m + 1 ) 2 m 2 + 3 m 2 + 5 m + 1 ( m + 1 ) 2 m 2 = 1 + 3 m 2 + 5 m + 1 ( m + 1 ) 2 m 2 \dfrac{m^4 + 2 m^3 + m^2 + 3 m^2 + 5 m + 1}{(m + 1)^2 m^2} = \dfrac{(m + 1)^2 m^2 + 3 m^2 + 5 m + 1}{(m + 1)^2 m^2} = 1 + \dfrac{3 m^2 + 5 m + 1}{(m + 1)^2 m^2}

ln ( m + 1 m ) = 1 m + 1 m = e m = 1 e 1 = 0.5819767 \implies \ln(\dfrac{m + 1}{m}) = 1 \implies \dfrac{m + 1}{m} = e \implies m = \dfrac{1}{e - 1} = \boxed{0.5819767} to seven decimal places.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...