Integral of a sum 3

Level pending

Let x > 1 x > 1 and m > 0 m > 0 .

If m + 1 m + 2 n = 1 n 3 x n d x = m 6 + 3 m 5 + 10 m 4 + 27 m 3 + 31 m 2 + 12 m + 2 m 3 ( m + 1 ) 3 \int_{m + 1}^{m + 2} \sum_{n = 1}^{\infty} \dfrac{n^3}{x^n} dx = \dfrac{m^6 + 3 m^5 + 10 m^4 + 27 m^3 + 31 m^2 + 12 m + 2}{m^3(m + 1)^3} , find the value of m m to seven decimal places.


The answer is 0.5819767.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jan 4, 2018

Let x > 1 x > 1 and m > 0 m > 0 .

n = 1 n x n = 1 x ( 1 + 1 x + 1 x 2 + 1 x 3 + . . . ) + 1 x 2 ( 1 + 1 x + 1 x 2 + 1 x 3 + . . . ) + 1 x 3 ( 1 + 1 x + 1 x 2 + 1 x 3 + . . . ) + . . . = \sum_{n = 1}^{\infty} \dfrac{n}{x^n} = \dfrac{1}{x}(1 + \dfrac{1}{x} + \dfrac{1}{x^2} + \dfrac{1}{x^3} + ... ) + \dfrac{1}{x^2}(1 + \dfrac{1}{x} + \dfrac{1}{x^2} + \dfrac{1}{x^3} + ...) +\dfrac{1}{x^3}(1 + \dfrac{1}{x} + \dfrac{1}{x^2} + \dfrac{1}{x^3} + ...) + ... =

( x x 1 ) ( 1 x ) ( x x 1 ) = x ( x 1 ) 2 . (\dfrac{x}{x - 1})(\dfrac{1}{x})(\dfrac{x}{x - 1}) = \dfrac{x}{(x - 1)^2}.

n = 1 n 2 x n = j = 1 ( n = j n x n ) = \sum_{n = 1}^{\infty} \dfrac{n^2}{x^n} = \sum_{j = 1}^{\infty} (\sum_{n = j}^{\infty} \dfrac{n}{x^n}) = j = 1 ( j x j + j + 1 x j + 1 + j + 2 x j + 2 + . . . ) = \sum_{j = 1}^{\infty} (\dfrac{j}{x^j} + \dfrac{j + 1}{x^{j + 1}} + \dfrac{j + 2}{x^{j + 2}} + ... ) = ( x x 1 ) j = 1 j x j + x ( x 1 ) 2 j = 1 1 x j = ( x x 1 ) ( x ( x 1 ) 2 ) + x ( x 1 ) 2 ( 1 x 1 ) = x 2 + x ( x 1 ) 3 . (\dfrac{x}{x - 1}) \sum_{j = 1}^{\infty} \dfrac{j}{x^j} + \dfrac{x}{(x - 1)^2} \sum_{j = 1}^{\infty} \dfrac{1}{x^j} = (\dfrac{x}{x - 1}) (\dfrac{x}{(x - 1)^2}) + \dfrac{x}{(x - 1)^2} (\dfrac{1}{x - 1}) = \dfrac{x^2 + x}{(x - 1)^3}.

S ( x ) = n = 1 n 3 x n = j = 0 ( n = j n 2 x n ) = S(x) = \sum_{n = 1}^{\infty} \dfrac{n^3}{x^n} = \sum_{j = 0}^{\infty} (\sum_{n = j}^{\infty} \dfrac{n^2}{x^{n}}) =

j = 0 ( j 2 x j ( k = 0 1 x k ) + 2 j x j \sum_{j = 0}^{\infty} (\dfrac{j^2}{x^j} (\sum_{k = 0}^{\infty} \dfrac{1}{x^k}) + \dfrac{2j}{x^j} ( k = 1 k x k ) (\sum_{k = 1}^{\infty} \dfrac{k}{x^k}) + 1 x j ( k = 1 k 2 x k ) ) = \dfrac{1}{x^j} (\sum_{k = 1}^{\infty} \dfrac{k^2}{x^k}) ) =

x x 1 j = 1 j 2 x j + 2 x ( x 1 ) 2 j = 1 j x j + x 2 + x ( x 1 ) 3 j = 1 1 x j = \dfrac{x}{x - 1} \sum_{j = 1}^{\infty} \dfrac{j^2}{x^j} + \dfrac{2x}{(x - 1)^2} \sum_{j = 1}^{\infty} \dfrac{j}{x^j} + \dfrac{x^2 + x}{(x - 1)^3} \sum_{j = 1}^{\infty} \dfrac{1}{x^j} =

( x x 1 ) ( x 2 + x ( x 1 ) 3 ) + ( 2 x ( x 1 ) 2 ) ( x ( x 1 ) 2 ) + ( x 2 + x ( x 1 ) 3 ) ( 1 x ) = (\dfrac{x}{x - 1}) (\dfrac{x^2 + x}{(x - 1)^3}) + (\dfrac{2x}{(x - 1)^2}) (\dfrac{x}{(x - 1)^2}) + (\dfrac{x^2 + x}{(x - 1)^3}) (\dfrac{1}{x}) = x 3 + 4 x 2 + x ( x 1 ) 4 \dfrac{x^3 + 4x^2 + x}{(x - 1)^4} .

Let u = x 1 d u = d x m + 1 m + 2 S ( x ) d x = m m + 1 u 3 + 7 u 2 + 12 u + 6 u 4 d u = m m + 1 ( 1 u + 7 u 2 + 12 u 3 + 6 u 4 ) d u u = x - 1 \implies du = dx \implies \int_{m + 1}^{m + 2} S(x) dx = \int_{m}^{m + 1} \dfrac{u^3 + 7u^2 + 12u + 6}{u^4} du = \int_{m}^{m + 1} (\dfrac{1}{u} + 7u^{-2} + 12u^{-3} + 6u^{-4}) du

= ( ln ( u ) 7 u 6 u 2 2 u 3 ) m m + 1 = = (\ln(u) - \dfrac{7}{u} - \dfrac{6}{u^2} - \dfrac{2}{u^3})|_{m}^{m + 1} = ln ( m + 1 m ) + 7 m 4 + 26 m 3 + 31 m 2 + 12 m + 2 m 3 ( m + 1 ) 3 = \ln(\dfrac{m + 1}{m}) + \dfrac{7m^4 + 26m^3 + 31m^2 + 12m + 2}{m^3 (m + 1)^3} = m 6 + 3 m 5 + 10 m 4 + 27 m 3 + 31 m 2 + 12 m + 2 m 3 ( m + 1 ) 3 = \dfrac{m^6 + 3 m^5 + 10 m^4 + 27 m^3 + 31 m^2 + 12 m + 2}{m^3(m + 1)^3} = m 6 + 3 m 5 + 3 m 4 + m 3 + 7 m 4 + 26 m 3 + 31 m 2 + 12 m + 2 m 3 ( m + 1 ) 3 = \dfrac{m^6 + 3m^5 + 3m^4 + m^3 + 7m^4 + 26m^3 + 31m^2 + 12m + 2}{m^3 (m + 1)^3} =

m 3 ( m + 1 ) 3 + 7 m 4 + 26 m 3 + 31 m 2 + 12 m + 2 m 3 ( m + 1 ) 3 = \dfrac{m^3 (m + 1)^3 + 7m^4 + 26m^3 + 31m^2 + 12m + 2}{m^3 (m + 1)^3} = 1 + 7 m 4 + 26 m 3 + 31 m 2 + 12 m + 2 m 3 ( m + 1 ) 3 ln ( m + 1 m ) = 1 m + 1 m = e m = 1 e 1 = 0.5819767 1 + \dfrac{7m^4 + 26m^3 + 31m^2 + 12m + 2}{m^3 (m + 1)^3} \implies \ln(\dfrac{m + 1}{m}) = 1 \implies \dfrac{m + 1}{m} = e \implies m = \dfrac{1}{e - 1} = \boxed{0.5819767} to seven decimal places.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...