Integral of a sum

Calculus Level 4

If m + 1 m + 2 n = 1 n x n d x = m 2 + m + 1 m ( m + 1 ) \displaystyle \int_{m + 1}^{m + 2} \sum_{n = 1}^{\infty} \dfrac{n}{x^n} dx = \dfrac{m^2 + m + 1}{m(m + 1)} , for x > 1 x > 1 and m > 0 m > 0 . find the value of m m to seven decimal places.


The answer is 0.5819767.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let S = n = 1 n x n \displaystyle S = \sum_{n=1}^\infty \frac n{x^n} . Then we have:

S = n = 1 n x n = n = 0 n x n = n = 0 n + 1 x n + 1 = 1 x ( n = 0 n x n + n = 0 1 x n ) = 1 x ( S + 1 1 1 x ) x S = S + x x 1 \begin{aligned} S & = \sum_{\color{#3D99F6}n=1}^\infty \frac n{x^n} = \sum_{\color{#D61F06}n=0}^\infty \frac n{x^n} \\ & = \sum_{\color{#D61F06}n=0}^\infty \frac {n+1}{x^{n+1}} \\ & = \frac 1x \left(\sum_{n=0}^\infty \frac n{x^n} + \sum_{n=0}^\infty \frac 1{x^n} \right) \\ & = \frac 1x \left(S + \frac 1{1-\frac 1x} \right) \\ xS & = S + \frac x{x-1} \end{aligned}

S = x ( x 1 ) 2 \implies S = \dfrac x{(x-1)^2}

Therefore,

I = m + 1 m + 2 n = 1 n x n d x = m + 1 m + 2 x ( x 1 ) 2 d x = m + 1 m + 2 x 1 + 1 ( x 1 ) 2 d x = m + 1 m + 2 ( 1 x 1 + 1 ( x 1 ) 2 ) d x = ln ( x 1 ) 1 x 1 m + 1 m + 2 = ln ( m + 1 m ) 1 m + 1 + 1 m = ln ( m + 1 m ) + 1 m ( m + 1 ) = ln ( m + 1 m ) + m 2 + m + 1 m ( m + 1 ) m 2 + m m ( m + 1 ) = ln ( m + 1 m ) + m 2 + m + 1 m ( m + 1 ) 1 \begin{aligned} I & = \int_{m+1}^{m+2} \sum_{n=1}^\infty \frac n{x^n} dx \\ & = \int_{m+1}^{m+2} \frac x{(x-1)^2} dx \\ & = \int_{m+1}^{m+2} \frac {x-1+1}{(x-1)^2} dx \\ & = \int_{m+1}^{m+2} \left(\frac 1{x-1} + \frac 1{(x-1)^2} \right) dx \\ & = \ln (x-1) - \frac 1{x-1} \bigg|_{m+1}^{m+2} \\ & = \ln \left(\frac {m+1}m\right) - \frac 1{m+1} + \frac 1m \\ & = \ln \left(\frac {m+1}m\right) + \frac 1{m(m+1)} \\ & = \ln \left(\frac {m+1}m\right) + \frac {{\color{#3D99F6}m^2+m}+1}{m(m+1)} - \frac {\color{#D61F06}m^2+m}{m(m+1)} \\ & = {\color{#D61F06}\ln \left(\frac {m+1}m\right)} + \frac {m^2+m+1}{m(m+1)} \color{#D61F06}-1 \end{aligned}

This implies that:

ln ( m + 1 m ) = 1 m + 1 m = e m = 1 e 1 0.5819767 \begin{aligned} \ln \left(\frac {m+1}m \right) & = 1 \\\frac {m+1}m & = e \\ \implies m & = \frac 1{e-1} \approx \boxed{0.5819767} \end{aligned}

Rocco Dalto
Jan 3, 2018

S ( x ) = n = 1 n x n = 1 x ( 1 + 1 x + 1 x 2 + 1 x 3 + . . . ) + 1 x 2 ( 1 + 1 x + 1 x 2 + 1 x 3 + . . . ) + 1 x 3 ( 1 + 1 x + 1 x 2 + 1 x 3 + . . . ) + . . . = S(x) = \sum_{n = 1}^{\infty} \dfrac{n}{x^n} = \dfrac{1}{x}(1 + \dfrac{1}{x} + \dfrac{1}{x^2} + \dfrac{1}{x^3} + ... ) + \dfrac{1}{x^2}(1 + \dfrac{1}{x} + \dfrac{1}{x^2} + \dfrac{1}{x^3} + ...) +\dfrac{1}{x^3}(1 + \dfrac{1}{x} + \dfrac{1}{x^2} + \dfrac{1}{x^3} + ...) + ... =

( x x 1 ) ( 1 x ) ( x x 1 ) = x ( x 1 ) 2 = x 1 + 1 ( x 1 ) 2 = 1 x 1 + 1 ( x 1 ) 2 (\dfrac{x}{x - 1})(\dfrac{1}{x})(\dfrac{x}{x - 1}) = \dfrac{x}{(x - 1)^2} = \dfrac{x - 1 + 1}{(x - 1)^2} = \dfrac{1}{x - 1} + \dfrac{1}{(x - 1)^2} .

m + 1 m + 2 S ( x ) d x = ( ln ( x 1 ) 1 x 1 ) m + 1 m + 2 = ln ( m + 1 m ) + 1 m ( m + 1 ) = m 2 + m + 1 m ( m + 1 ) = 1 + 1 m ( m + 1 ) \int_{m + 1}^{m + 2} S(x) dx = (\ln(x - 1) - \dfrac{1}{x - 1})|_{m + 1}^{m + 2} = \ln(\dfrac{m + 1}{m}) + \dfrac{1}{m(m + 1)} = \dfrac{m^2 + m + 1}{m(m + 1)} = 1 + \dfrac{1}{m(m + 1)} \implies

ln ( m + 1 m ) = 1 m + 1 m = e m = 1 e 1 = 0.5819767 \ln(\dfrac{m + 1}{m}) = 1 \implies \dfrac{m + 1}{m} = e \implies m = \dfrac{1}{e - 1} = \boxed{0.5819767} to seven decimal places.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...