Integral of fractional

Calculus Level 5

0 ( 1 ) x 2016 { x } d x 2 x = ? \large \displaystyle \int_{0}^\infty\dfrac{(-1)^{\lfloor x\rfloor}\cdot 2016\cdot { \{x\} }\cdot dx}{2^{\lceil x\rceil}} = \, ?

Notations :


The answer is 336.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Harsh Khatri
Apr 6, 2016

The given function vanishes at integral values of x x since fractional part of x x is zero at these values.

We know that for non-integral values of x x :

x = x + 1 \lceil x \rceil = \lfloor x \rfloor + 1

The given integral now reduces to:

0 1 ( 1 ) x 2016 { x } 2 x d x + 1 2 ( 1 ) x 2016 { x } 2 x d x + \displaystyle \int_{0}^{1} \frac{(-1)^{\lfloor x \rfloor} \cdot 2016 \{x\}}{2^{\lceil x \rceil}} dx + \displaystyle \int_{1}^{2} \frac{(-1)^{\lfloor x \rfloor} \cdot 2016 \{x\}}{2^{\lceil x \rceil}} dx + \ldots

( 1 ) 0 2016 2 1 0 1 { x } d x + ( 1 ) 1 2016 2 2 1 2 { x } d x + \displaystyle \frac{(-1)^{0}\cdot 2016}{2^{1}} \displaystyle \int_{0}^{1} \{x\} dx + \frac{(-1)^{1}\cdot 2016}{2^{2}} \displaystyle \int_{1}^{2} \{x\} dx + \ldots

Using the property:

r r + 1 { x } d x = 0 1 { x } d x = 1 2 ; r Z \displaystyle \int_{r}^{r+1} \{x\} dx = \displaystyle \int_{0}^{1} \{x\} dx = \frac{1}{2} ; \forall r \in \mathbb{Z}

We get

( ( 1 ) 0 2 1 + ( 1 ) 1 2 2 + ) 2016 0 1 { x } d x \bigg( \frac{(-1)^{0}}{2^{1}} + \frac{(-1)^1}{2^2} + \ldots \bigg) \cdot 2016 \cdot \displaystyle \int_{0}^{1} \{x\} dx

( r = 0 ( 1 ) r 2 r + 1 ) 2016 1 2 \displaystyle \Rightarrow \bigg( \displaystyle \sum_{r=0}^{\infty} \frac{(-1)^{r}}{2^{r+1}} \bigg) \cdot 2016 \cdot \frac{1}{2}

1008 1 2 r = 0 ( 1 2 ) r \displaystyle \Rightarrow 1008 \cdot \frac{1}{2} \cdot \displaystyle \sum_{r=0}^{\infty} \big( \frac{-1}{2} \big)^{r}

This is an infinite geometric progression. The sum yields

504 × 1 1 1 2 \displaystyle \Rightarrow 504 \times \frac{1}{1-\frac{-1}{2}}

336 \displaystyle \Rightarrow \boxed{336}

Same way .... (+1)..

Rishabh Jain - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...