Integral of Laplace

Calculus Level 5

2 0 L { n = 1 ( 1 ) n 1 t 2 n 1 ( ( 2 n 1 ) ! ) 2 } d s = ? \large{2 \displaystyle \int^{\infty}_{0} \mathcal{L} \left \{ \displaystyle \sum^{\infty}_{n=1} \dfrac{(-1)^{n-1} t^{2n-1}}{\left((2n-1)! \right)^2} \right \}ds=?}


Clarification

L { f ( t ) } = F ( s ) \mathcal{L} \{f(t)\}=F(s) denotes laplace transform of f ( t ) f(t)


The answer is 3.1415.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aareyan Manzoor
Feb 21, 2016

first, we calculate the laplace transform: L { n = 1 ( 1 ) n 1 t 2 n 1 ( ( 2 n 1 ) ! ) 2 } = n = 1 ( 1 ) n 1 ( ( 2 n 1 ) ! ) 2 L { t 2 n 1 } = n = 1 ( 1 ) n 1 ( ( 2 n 1 ) ! ) 2 ( 2 n 1 ) ! s 2 n = 1 s sin ( 1 s ) \mathcal{L} \left \{\sum^{\infty}_{n=1} \dfrac{(-1)^{n-1} t^{2n-1}}{\left((2n-1)! \right)^2} \right\}=\sum^{\infty}_{n=1} \dfrac{(-1)^{n-1}}{\left((2n-1)! \right)^2}\mathcal{L}\{t^{2n-1}\}\\=\sum^{\infty}_{n=1} \dfrac{(-1)^{n-1}}{\left((2n-1)! \right)^2}\dfrac{(2n-1)!}{s^{2n}}=\dfrac{1}{s}\sin\left(\dfrac{1}{s}\right) In the last step the taylor series of sine was used. The integral becomes 2 0 1 s sin ( 1 s ) ds = 2 0 sin ( x ) x dx 2\int_0^\infty \dfrac{1}{s} \sin\left(\dfrac{1}{s}\right)\text{ds}=2\int_0^\infty \dfrac{\sin(x)}{x}\text{dx} A substitution of x = t 1 x=t^{-1} was made. The integral is the famous trigonometric integral, which i will prove using laplace transform in one line 2 0 s i n ( x ) x d x = 2 0 L { sin ( x ) } ( s ) d s = 2 0 1 s 2 + 1 d s = 2 arctan s 0 = π 2\int_0^\infty\frac{sin(x)}{x} dx=2\int_0^\infty \mathcal{L}\{\sin(x)\}(s) ds=2\int_0^\infty \dfrac{1}{s^2+1} ds=2\arctan s\bigg|_{0}^{\infty}=\boxed{\pi}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...