Integral of the year and my 50 followers problem

Calculus Level 4

x 4 d x ( x 2 + 100 7 2 ) ( x 2 + 100 8 2 ) = ? \large \displaystyle \int \dfrac{x^4 dx}{(x^2 + 1007^2)(x^2 + 1008^2)} = \ ?

x + 100 7 3 2015 tan 1 x 1007 + 100 8 3 2015 tan 1 x 1008 + C x + \frac{1007^3}{2015}\tan^{-1}\frac{x}{1007} + \frac{1008^3}{2015}\tan^{-1}\frac{x}{1008} + C None of these x + 1007 2015 tan 1 x 1007 + 1008 2015 tan 1 x 1008 + C x + \frac{1007}{2015}\tan^{-1}\frac{x}{1007} + \frac{1008}{2015}\tan^{-1}\frac{x}{1008} + C x + 100 7 3 2015 tan 1 x 1007 100 8 3 2015 tan 1 x 1008 + C x + \frac{1007^3}{2015}\tan^{-1}\frac{x}{1007} - \frac{1008^3}{2015}\tan^{-1}\frac{x}{1008} + C x + 100 7 2 2015 tan 1 x 1007 100 8 2 2015 tan 1 x 1008 + C x + \frac{1007^2}{2015}\tan^{-1}\frac{x}{1007} - \frac{1008^2}{2015}\tan^{-1}\frac{x}{1008} + C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let the given integral be denoted by I I .

I = ( ( x 2 + 100 7 2 ) 100 7 2 ) ( ( x 2 + 100 8 2 ) 100 8 2 ) d x ( x 2 + 100 7 2 ) ( x 2 + 100 8 2 ) I = \displaystyle \int \frac{((x^2 + 1007^2) - 1007^2)((x^2 + 1008^2) - 1008^2)dx}{(x^2 + 1007^2)(x^2 + 1008^2)}

I = d x 100 7 2 d x x 2 + 100 7 2 100 8 2 d x x 2 + 100 8 2 + ( 1007 × 1008 ) 2 d x ( x 2 + 100 7 2 ) ( x 2 + 100 8 2 ) I = \displaystyle \int dx - 1007^2 \int \frac{dx}{x^2 + 1007^2} - 1008^2 \int \frac{dx}{x^2 + 1008^2} + (1007 \times 1008)^2 \int \frac{dx}{(x^2 + 1007^2)(x^2 +1008^2)}

I = x 100 7 2 1 1007 tan 1 ( x 1007 ) 100 8 2 1 1008 tan 1 ( x 1008 ) + ( 1007 × 1008 ) 2 100 8 2 100 7 2 ( 1 x 2 + 100 7 2 1 x 2 + 100 8 2 ) d x I = \displaystyle x - 1007^2 \frac{1}{1007}\tan^{-1}(\frac{x}{1007}) - 1008^2\frac{1}{1008}\tan^{-1}(\frac{x}{1008}) + \frac{(1007\times 1008)^2}{1008^2 - 1007^2} \int (\frac{1}{x^2 + 1007^2} - \frac{1}{x^2 + 1008^2}) dx

I = x 1007 tan 1 ( x 1007 ) 1008 tan 1 ( x 1008 ) + ( 1007 × 1008 ) 2 2015 × ( 1 1007 tan 1 ( x 1007 ) 1 1008 tan 1 ( x 1008 ) ) + C I = x - 1007\tan^{-1}(\frac{x}{1007}) - 1008\tan^{-1}(\frac{x}{1008}) + \frac{(1007\times1008)^2}{2015} \times (\frac{1}{1007}\tan^{-1}(\frac{x}{1007}) - \frac{1}{1008}\tan^{-1}(\frac{x}{1008})) + C

Simplification is a little tedious, after which we get,

I = x + 100 7 3 2015 tan 1 ( x 1007 ) 100 8 3 2015 tan 1 ( x 1008 ) + C I = \boxed{x + \frac{1007^3}{2015}\tan^{-1}(\frac{x}{1007}) - \frac{1008^3}{2015}\tan^{-1}(\frac{x}{1008}) + C}

Moderator note:

Great! What would be indefinite integral be if x 4 x^4 is replaced with x 5 x^5 instead?

take x common and proceed in a similar way after which introduce x in each expression and solve accordingly

Priyesh Pandey - 6 years, 1 month ago

Log in to reply

Yep. You got that right.

Vishwak Srinivasan - 6 years, 1 month ago

What do you mean? I did the "let y = x 2 y=x^2 " thing.

Pi Han Goh - 6 years ago

Log in to reply

What i meant is to proceed in a similar fashion as with x^4, and when u reach at step 2 (see Vishwak Srinivasan's solution) then multiply whole thing with x. each of the integral is of known form here, so u can proceed in a regular fashion. I'll try to post the complete solution soon for x^5.

Priyesh Pandey - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...