Integral of the Year

Level 2

G i v e n f ( x ) = 2 x + 0 2014 f ( x ) d x h e n c e , 0 2013 f ( x ) d x = . . . \begin{array}{l} {\rm{Given}}\;\\ \quad \quad \quad f(x) = 2x + \int\limits_0^{2014} {f(x)\;dx} \\ {\rm{hence}},\int\limits_0^{2013} {f(x)\;dx} = ...\; \end{array}


The answer is -4027.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Indronil Ghosh
Apr 26, 2014

First, notice that 0 2014 f ( x ) d x \displaystyle\int_0^{2014} f(x) \,\mathrm{d}x is a constant, which we will call C C .

So we can write the given equation as f ( x ) = 2 x + C f(x)= 2x + C .

Now, if we integrate both sides of this equation from 0 to 2014 (w/respect to x), then we will get C C on the left side and eliminate f ( x ) f(x) from the equation, allowing us to find C C .

0 2014 f ( x ) d x = 0 2014 2 x d x + 0 2014 C d x C = 201 4 2 + 2014 C \begin{aligned} \displaystyle\int_0^{2014}f(x) \,\mathrm{d}x & = \int_0^{2014} 2x\,\mathrm{d}x + \int_0^{2014} C \,\mathrm{d}x \\ C &=2014^2 +2014C \end{aligned}

So C = 201 4 2 2013 \,\displaystyle C=\frac{-2014^2}{2013} , and f ( x ) = 2 x 201 4 2 2013 \,\displaystyle f(x) = 2x-\dfrac{2014^2}{2013} .

Finally, 0 2013 f ( x ) d x = 0 2013 ( 2 x 201 4 2 2013 ) d x = 201 3 2 201 4 2 = 4027 \displaystyle \int_0^{2013} f(x) \,\mathrm{d}x = \int_0^{2013} \left(2x-\dfrac{2014^2}{2013}\right) \,\mathrm{d}x = 2013^2 - 2014^2 = \boxed{-4027} .

Wonderful@Indronil Ghosh

sandeep Rathod - 6 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...