Integration of Weird Functions - 3

Calculus Level 5

Find 0 10 0 10 x + y d x d y \large \int_{0}^{10}\int_{0}^{10}\lfloor x+y \rfloor\ dx\ dy

Notation: \lfloor \cdot \rfloor denotes the floor function


The answer is 950.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Qweros Bistoros
Jun 20, 2020

Using substitution x=10-x and y=10-y:

I = 0 10 0 10 x + y d x d y = 0 10 0 10 10 x + 10 y d x d y I=\int_{0}^{10}\int_{0}^{10} \lfloor{x+y}\rfloor dxdy = \int_{0}^{10}\int_{0}^{10} \lfloor{10-x+10-y}\rfloor dxdy

Add two copies of integral and move all under one integral sign:

2 I = 0 10 0 10 x + y + 20 x y d x d y 2I=\int_{0}^{10}\int_{0}^{10} \lfloor{x+y}\rfloor + \lfloor{20-x-y}\rfloor dxdy

If x+y is not integer then x + y + 20 x y = 19 \lfloor{x+y}\rfloor + \lfloor{20-x-y}\rfloor = 19

x+y is integer on area size 0, so 2 I = 0 10 0 10 19 d x d y = 1900 2I=\int_{0}^{10}\int_{0}^{10} 19 dxdy = 1900

So I = 950 I=950

Wow, nice work. We can generalize this to 0 n 0 n x + y d x d y = 1 2 n 2 ( 2 n 1 ) \int_0^n \int_0^n \lfloor x + y \rfloor \, dx \; dy = \frac12 n^2 (2n-1) for all non-negative integers n n .

Can we generalize this even further?

Pi Han Goh - 11 months, 3 weeks ago

Let us divide the square formed by x = 0 , x = 10 , y = 0 , y = 10 x=0,x=10,y=0,y=10 into two regions R 1 R_{1} and R 2 R_{2}

Now let us draw the lines x + y = 1 , x + y = 2 , x + y = 3 , . . . . . . . . x + y = 19 x+y=1 , \,\, x+y =2 ,\,\, x+y=3,\,\, ........x+y=19

Now let's think of a vital concept. Double integral over a region of a constant function is just equal to the constant times the area of the region .

We know that r x + y < r + 1 x + y = r \displaystyle r\leq x+y < r+1 \implies \lfloor x+y \rfloor = r .

So if we denote the region r x + y < r + 1 r\leq x+y < r+1 which lies inside the square as T r T_{r} . Then the double integral of the function over this region is just equal to :-

r A r e a o f T r \displaystyle r \cdot Area\,\, of\,\,T_{r} .

Now area of T r T_{r} can be written as the difference of areas of two triangles.

Now consider the region R 1 R_{1}

Here the area of T r T_{r} is given by the difference of areas of triangles formed by the lines x + y = r + 1 , x = 0 , y = 0 x+y=r+1,\,x=0,\,y=0 and the lines x + y = r , x = 0 , y = 0 x+y=r,\,x=0,\,y=0 Which is given by ( r + 1 ) 2 r 2 2 \displaystyle \frac{(r+1)^{2} - r^{2}}{2} .

Hence the double integral in that region T r T_{r} is equal to r ( ( r + 1 ) 2 r 2 ) 2 \displaystyle \frac{r\left((r+1)^{2}-r^{2}\right)}{2}

So R 1 x + y d x d y = r = 0 r = 9 r A r e a o f T r = r = 0 9 r ( ( r + 1 ) 2 r 2 ) 2 \displaystyle \iint_{R_{1}}\lfloor x+y \rfloor dxdy = \sum_{r=0}^{r=9}r\cdot Area\,\,of\,\,T_{r} =\sum_{r=0}^{9} \frac{r\left((r+1)^{2}-r^{2}\right)}{2}

In R 2 R_{2} we just have to use symmetry . There the double integral would be :-

R 2 x + y d x d y = 10 2 ( 1 0 2 9 2 ) + 11 2 ( 9 2 8 2 ) + . . . . . . . . . . . . . + 18 2 ( 2 2 1 2 ) + 19 2 ( 1 2 0 2 ) \displaystyle \iint_{R_{2}}\lfloor x+y \rfloor dxdy = \frac{10}{2}\cdot (10^{2}-9^{2}) + \frac{11}{2}\cdot (9^{2}-8^{2}) +.............+\frac{18}{2}\cdot (2^{2}-1^{2}) + \frac{19}{2}\cdot (1^{2}-0^{2})

= r = 0 9 ( 19 r ) ( ( r + 1 ) 2 r 2 ) 2 \displaystyle = \sum_{r=0}^{9} (19-r)\frac{\left((r+1)^{2}-r^{2}\right)}{2} .

So the in total R 1 x + y d x d y + R 2 x + y d x d y = 0 10 0 10 x + y d x d y = r = 0 9 19 ( ( r + 1 ) 2 r 2 ) 2 = r = 0 9 19 2 r + 1 2 = 950 \displaystyle \iint_{R_{1}}\lfloor x+y \rfloor dxdy + \iint_{R_{2}}\lfloor x+y \rfloor dxdy = \int_{0}^{10}\int_{0}^{10}\lfloor x+y \rfloor dxdy=\sum_{r=0}^{9}19\cdot\frac{\left((r+1)^{2}-r^{2}\right)}{2}=\sum_{r=0}^{9}19\cdot \frac{2r+1}{2}=950

Chew-Seong Cheong
Jun 21, 2020

Consider I n I_n as follows:

I n = 0 n 0 n x + y d x d y = 0 n 0 n x + { x } + y + { y } d x d y = 0 n 0 n ( x + y + { x } + { y } ) d x d y = 0 n 0 n ( 0 n x d x + 0 n y d x + 0 n { x } + { y } d x ) d y = 0 n ( k = 1 n 1 k + y x 0 n + n 1 { y } 1 d x ) d y = 0 n ( n ( n 1 ) 2 + n y + n { y } ) d y = n ( n 1 ) 2 y 0 n + n k = 1 n 1 k + n 2 0 1 y d y = n 2 ( n 1 ) 2 + n 2 ( n 1 ) 2 + n 2 2 = n 2 ( 2 n 1 ) 2 \begin{aligned} I_n & = \int_0^n \int_0^n \lfloor \blue x + \red y \rfloor \ dx\ dy \\ & = \int_0^n \int_0^n \lfloor \blue{\lfloor x \rfloor + \{x\}} + \red{\lfloor y \rfloor + \{y\}} \rfloor \ dx\ dy \\ & = \int_0^n \int_0^n \left(\lfloor x \rfloor + \lfloor y \rfloor + \lfloor \{x\} + \{y\} \rfloor \right) dx\ dy \\ & = \int_0^n \int_0^n \left(\blue{\int_0^n \lfloor x \rfloor \ dx} + \int_0^n \lfloor y \rfloor \ dx + \red{\int_0^n \lfloor \{x\} + \{y\} \rfloor \ dx} \right) \ dy \\ & = \int_0^n \left(\blue{\sum_{k=1}^{n-1} k} + \lfloor y \rfloor x \ \bigg|_0^n + \red{n \int_{1-\{y\}}^1 dx} \right) dy \\ & = \int_0^n \left(\frac {n(n-1)}2 + n \lfloor y \rfloor + n \{y\} \right) dy \\ & = \frac {n(n-1)}2 \cdot y \ \bigg|_0^n + n \sum_{k=1}^{n-1} k + n^2 \int_0^1 y \ dy \\ & = \frac {n^2(n-1)}2 + \frac {n^2(n-1)}2 + \frac {n^2}2 \\ & = \frac {n^2(2n-1)}2 \end{aligned}

For n = 10 n=10 , I 10 = 100 19 2 = 950 I_{10} = \dfrac {100\cdot 19}2 = \boxed{950} .

Could you please explain the the second and the third line? What exactly is {x}, the non-integer remainder of x?

Paraa - - 9 months, 2 weeks ago

Log in to reply

I have added two lines to explain. Hope they help

Chew-Seong Cheong - 9 months, 2 weeks ago

Thank you for adding those

Paraa - - 9 months, 2 weeks ago

Log in to reply

You are welcome.

Chew-Seong Cheong - 9 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...