Integral or differential

Calculus Level 3

For a real number x > 0 x > 0 , let F ( x ) = x 2 4 x 2 sin t d t \large F(x) = \int_{x^2}^{4x^2} \sin\sqrt t\, dt

For a real number t > 0 t > 0 , let t \sqrt t denote the positive square root of t t . If F F' is the first derivative of F F , find the value of F ( π 2 ) F'\left(\dfrac{\pi}{2}\right) ?

2 π 2\pi π -\pi π \pi 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jul 21, 2017

F ( x ) = x 2 4 x 2 sin t d t Let u 2 = t 2 u d u = d t = 2 x 2 x u sin u d u = 2 ( a 2 x u sin u d u a x u sin u d u ) a > 0 is a constant \begin{aligned} F(x) & = \int_{x^2}^{4x^2} \sin \sqrt t \ dt & \small \color{#3D99F6} \text{Let } u^2 = t \implies 2u \ du = dt \\ & = 2 \int_x^{2x} u\sin u \ du \\ & = 2 \left(\int_{\color{#3D99F6}a}^{2x} u\sin u \ du - \int_{\color{#3D99F6}a}^x u\sin u \ du \right) & \small \color{#3D99F6} a > 0 \text{ is a constant} \end{aligned}

F ( x ) = 2 × d d x ( a 2 x u sin u d u a x u sin u d u ) = 2 ( 2 x sin 2 x x sin x ) \begin{aligned} \implies F'(x) & = 2 \times \frac d{dx} \left(\int_a^{2x} u\sin u \ du - \int_a^x u\sin u \ du \right) \\ & = 2 \left(2x\sin 2x - x\sin x \right) \end{aligned}

F ( π 2 ) = π \begin{aligned} \implies F' \left(\frac \pi 2\right) & = \boxed{-\pi} \end{aligned}

We could use leibnitz from the starting, isnt it sir?

Md Zuhair - 3 years, 10 months ago

Log in to reply

Don't quite know what Leibnitz formula. But I see the reverse of integration.

Chew-Seong Cheong - 3 years, 10 months ago
Zach Abueg
Jul 21, 2017

F ( x ) = d d x x 2 4 x 2 sin t d t = d d x ( x 2 c sin t d t + c 4 x 2 sin t d t ) for some constant c = d d x ( c x 2 sin t d t + c 4 x 2 sin t d t ) Apply the Fundamental Theorem of Calculus = 2 x sin x 2 + 8 x sin 4 x 2 = 2 x sin x + 8 x sin 2 x = 2 x ( 4 sin 2 x sin x ) F ( π 2 ) = π \displaystyle \begin{aligned} F'(x) & = \frac{d}{dx} \int_{x^2}^{4x^2} \sin \sqrt{t} \ dt \\ & = \frac{d}{dx} \left( \int_{x^2}^{c} \sin \sqrt{t} \ dt + \int_{c}^{4x^2} \sin \sqrt{t} \ dt \right) & \small \color{#3D99F6} \text{for some constant } c \\ & = \frac{d}{dx} \left(- \int_{c}^{x^2} \sin \sqrt{t} \ dt + \int_{c}^{4x^2} \sin \sqrt{t} \ dt \right) & \small \color{#3D99F6} \text{Apply the Fundamental Theorem of Calculus} \\ & = -2x \cdot \sin \sqrt{x^2} \ + \ 8x \cdot \sin \sqrt{4x^2} \\ & = -2x \sin |x| \ + \ 8x \sin |2x| \\ & = 2x\left(4\sin |2x| - \sin |x|\right) \\ \implies F'\left(\frac {\pi}{2}\right) & = \boxed{- \pi} \end{aligned}

Priyanshu Mishra
Aug 4, 2017

We have

F ( x ) = x 2 4 x 2 sin t d t F\left( x \right) = \int _{ x^{ 2 } }^{ 4{ x }^{ 2 } }{ \sin { \sqrt { t } } dt } .

Applying Leibniz Rule , we get

F ( x ) = sin ( 2 x ) × 8 x sin ( x ) × 2 x F'\left( x \right) = \sin { \left( 2x \right) \times 8x } - \sin { \left( x \right) \times 2x } .

Setting x = π 2 x = \frac { \pi }{ 2 } above , gives

F ( π 2 ) = sin ( π ) × 4 π sin ( π 2 ) × π = π F'\left( \frac { \pi }{ 2 } \right) = \sin { \left( \pi \right) \times 4\pi } - \sin { \left( \frac { \pi }{ 2 } \right) \times \pi } = \boxed{-\pi}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...