This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I = ∫ 0 ∞ e x − 1 x 3 d x = ∫ 0 ∞ x 3 ( n = 1 ∑ ∞ e − n x d x )
I = n = 1 ∑ ∞ ∫ 0 ∞ x 3 e − n x d x
let's take n x = u so n = d u / d x
I = n = 1 ∑ ∞ n 1 ∫ 0 ∞ n 3 u 3 e − u d u
I = n = 1 ∑ ∞ n 4 1 Γ ( 4 )
Note Γ ( s ) = ∫ 0 ∞ x s − 1 e − x d x
And Γ ( s ) = ( s − 1 ) !
I = Γ ( 4 ) n = 1 ∑ ∞ n 4 1
I = 3 ! ζ ( 4 )
I = 6 × 9 0 π 4
I = 1 5 π 4
In general ∫ 0 ∞ e x − 1 x n = n ! ζ ( n + 1 )
@Dwaipayan Shikari , you can key in as \int_0^\infty ∫ 0 ∞ . Notice that you don't need braces { } for a single character.
I = ∫ 0 ∞ e x − 1 x 3 d x
Multiplying numeritor and denominator by e − x gives: I = ∫ 0 ∞ 1 − e − x e − x x 3 d x
Expanding the denominator as an infinite geometric series, gives: I = ∫ 0 ∞ x 3 ( e − x + e − 2 x + e − 3 x + e − 4 x + … ) d x ∵ e − x < 1 ∀ x > 0 I = k = 1 ∑ ∞ ( ∫ 0 ∞ x 3 e − k x d x )
Let:
I 2 = ∫ 0 ∞ x 3 e − k x d x Let: k x = z . This transforms the integral to:
I 2 = k 4 1 ∫ 0 ∞ z 3 e − z d z I 2 = k 4 Γ ( 4 )
∵ Γ ( 4 ) = 3 ! ⟹ I 2 = k 4 6
Using the above result in I gives:
I = k = 1 ∑ ∞ ( ∫ 0 ∞ x 3 e − k x d x ) = k = 1 ∑ ∞ k 4 6
I = 6 k = 1 ∑ ∞ k 4 1 I = 6 ζ ( 4 ) I = 6 ( 9 0 π 4 ) I = 1 5 π 4
∵ ζ ( 4 ) = 9 0 π 4
Where ζ ( n ) denotes the Reimann-Zeta function and Γ ( n ) denotes the Gamma function.
Problem Loading...
Note Loading...
Set Loading...
Note that
ζ ( s ) ⟹ ∫ 0 ∞ e x − 1 x 3 d x = Γ ( s ) 1 ∫ 0 ∞ e x − 1 x s − 1 d x = ζ ( 4 ) Γ ( 4 ) = 9 0 π 4 ⋅ ( 4 − 1 ) ! = 1 5 π 4 ≈ 6 . 4 9 where ζ ( ⋅ ) denotes the Riemann zeta function and Γ ( ⋅ ) denotes the gamma function.
References: