What are all these brackets?

Algebra Level 2

The number of real solutions of 7 x + 23 { x } = 191 7\lfloor x\rfloor + 23\{x\}=191 is?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Mar 30, 2015

7 x + 23 { x } = 191 { x } = 191 7 x 23 0 < 191 7 x 23 < 1 0 < 191 7 x < 23 168 < 7 x < 191 168 7 < x < 191 7 24 < x < 27.285 25 x 27 7 \lfloor x \rfloor + 23 \{ x \} = 191 \quad \Rightarrow \{ x \} = \dfrac {191- 7 \lfloor x \rfloor} {23} \quad \Rightarrow 0 < \dfrac {191- 7 \lfloor x \rfloor} {23} < 1 \\ \Rightarrow 0 < 191- 7 \lfloor x \rfloor < 23 \quad \Rightarrow 168 <7 \lfloor x \rfloor < 191 \quad \Rightarrow \dfrac{168}{7} < \lfloor x \rfloor < \dfrac {191}{7} \\ \Rightarrow 24 < \lfloor x \rfloor < 27.285 \quad \Rightarrow 25 \le \lfloor x \rfloor \le 27

Therefore, the number of solutions is 3 \boxed{3} .

Well { x } \{x\} can be zero too. So there should be \le right from the beginning.

Sanjeet Raria - 6 years, 2 months ago

it can't be zero because if {x} is zero then 191 must be divisible by 7 but it is not.

Hikmet Erdogan - 7 months, 3 weeks ago
Archit Boobna
Mar 30, 2015

23 { x } = 191 7 x ( 1 ) S i n c e R H S i s a n i n t e g e r , L H S i s a l s o a n i n t e g e r . S o 23 { x } i s a n i n t e g e r . W e k n o w t h a t 0 { x } < 1 S o { x } i s i n t h e f o r m a 23 w h e r e a i s a w h o l e n u m b e r f r o m 0 t o 22. S o 23 { x } i s a w h o l e n u m b e r f r o m 0 t o 22. R e a r r a n g i n g ( 1 ) , w e g e t 7 x = 191 23 { x } L H S i s a l w a y s a m u l t i p l e o f s e v e n , s o w e j u s t n e e d t o c h e c k h o w m a n y m u l t i p l e s o f 7 l i e f r o m 191 22 ( = 169 ) t o 191. T h i s c o m e s o u t t o b e 3 23\{ x\} =191-7\left\lfloor x \right\rfloor \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad (1)\\ Since\quad RHS\quad is\quad an\quad integer,\quad LHS\quad is\quad also\quad an\quad integer.\\ So\quad 23\{ x\} \quad is\quad an\quad integer.\\ We\quad know\quad that\quad 0\le \{ x\} <1\\ So\quad \{ x\} \quad is\quad in\quad the\quad form\quad \frac { a }{ 23 } \quad where\quad a\quad is\quad a\quad whole\quad number\quad from\quad 0\quad to\quad 22.\\ So\quad 23\{ x\} \quad is\quad a\quad whole\quad number\quad from\quad 0\quad to\quad 22.\\ Rearranging\quad (1),\quad we\quad get\\ 7\left\lfloor x \right\rfloor =191-23\{ x\} \\ LHS\quad is\quad always\quad a\quad multiple\quad of\quad seven,\quad so\quad we\quad just\quad need\quad to\quad check\quad \\ how\quad many\quad multiples\quad of\quad 7\quad lie\quad from\quad 191-22\quad (=169)\quad to\quad 191.\\ \\ This\quad comes\quad out\quad to\quad be\quad \boxed { 3 }

Mukul Sharma
Apr 10, 2015

Did the same way :-)

Easy one. Ans :3

Pawan pal - 5 years, 3 months ago

That's a comment, not a solution.

Prayas Rautray - 3 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...