Integral Problem!!

Level pending

Evaluate ( e π e π x i d x ) ( 1 i ) (\displaystyle\int_{e^{-\pi}}^{e^{\pi}} x^{i} \:\ dx) * (-1 - i) to seven decimal places, where i i is the imaginary unit.


The answer is 23.0974787.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jan 3, 2020

For x i d x : \displaystyle\int x^{i} \:\ dx :

x i d x = e i ln ( x ) d x \displaystyle\int x^{i} \:\ dx = \displaystyle\int e^{i\ln(x)} \:\ dx

Let u = e i ln ( x ) u = i x e i ln ( x ) u = e^{i\ln(x)} \implies u' = \dfrac{i}{x}e^{i\ln(x)} and v = 1 v = x v' = 1 \implies v = x \implies

e i ln ( x ) d x = x e i ln ( x ) i e i ln ( x ) d x \displaystyle\int e^{i\ln(x)} \: dx = x e^{i\ln(x)} - i\displaystyle\int e^{i\ln(x)} \:\ dx \implies

( 1 + i ) e i ln ( x ) d x = x e i ln ( x ) (1 + i)\displaystyle\int e^{i\ln(x)} \:\ dx = x e^{i\ln(x)} \implies

e i ln ( x ) d x = 1 1 + i x e i ln ( x ) = 1 2 ( 1 i ) x e i ln ( x ) \displaystyle\int e^{i\ln(x)} \: dx = \dfrac{1}{1 + i}x e^{i\ln(x)} = \dfrac{1}{2}(1 - i) x e^{i\ln(x)}

\implies

e π e π x i d x = \displaystyle\int_{e^{-\pi}}^{e^{\pi}} x^{i} \:\ dx = 1 2 ( 1 i ) ( e π e i π e π e i π ) = 1 2 ( 1 i ) ( e π + e π ) \dfrac{1}{2}(1 - i)(e^{\pi} * e^{i\pi} - e^{-\pi} * e^{-i\pi}) = \dfrac{1}{2}(1 - i)(-e^{\pi} + e^{-\pi})

= 1 2 ( 1 i ) ( e π e π ) = \dfrac{1}{2}(1 - i)(e^{-\pi} - e^{\pi})

( e π e π x i d x ) ( 1 i ) = \implies (\displaystyle\int_{e^{-\pi}}^{e^{\pi}} x^{i} \:\ dx) * (-1 - i) = 1 2 ( 1 i 2 ) ( e π e π ) = e π e π 23.0974787 -\dfrac{1}{2}(1 - i^2)(e^{-\pi} - e^{\pi}) = e^{\pi} - e^{-\pi} \approx \boxed{23.0974787} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...