Integral Stuff 3

Calculus Level 5

0 ( π 2 arctan ( x ) ) 3 d x = 3 8 ( π a log ( b ) c ζ ( d ) ) \large \int_0^{\infty } \left(\frac{\pi }{2}-\arctan (x) \right)^3 \, dx=\frac{3}{8} \left(\pi ^a \log (b)-c \zeta (d)\right)

The equation above holds true for positive integers a a , b b , c c , and d d . Find a + b + c + d a+b+c+d .

Notation: ζ ( ) \zeta(\cdot) denotes the Riemann zeta function .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Nov 19, 2017

Integating by parts twice, and then putting x = cot θ x = \cot\theta , we obtain 0 ( 1 2 π tan 1 x ) 3 d x = 0 ( tan 1 x 1 ) 3 d x = [ x ( tan 1 x 1 ) 3 ] 0 + 3 0 ( tan 1 x 1 ) 2 x x 2 + 1 d x = 3 0 ( tan 1 x 1 ) 2 x x 2 + 1 d x = 3 [ 1 2 ( tan 1 x 1 ) 2 ln ( x 2 + 1 ) ] 0 + 3 0 tan 1 x 1 ln ( x 2 + 1 ) x 2 + 1 d x = 3 0 tan 1 x 1 ln ( x 2 + 1 ) x 2 + 1 d x = 6 0 1 2 π θ ln ( c o s e c θ ) d θ = 6 0 1 2 π θ ln ( sin θ ) d θ \begin{aligned} \int_0^\infty \left(\tfrac12\pi - \tan^{-1}x\right)^3\,dx & = \; \int_0^\infty \big(\tan^{-1}x^{-1}\big)^3\,dx \; = \; \left[ x\big(\tan^{-1}x^{-1}\big)^3\right]_0^\infty + 3 \int_0^\infty\frac{\big(\tan^{-1}x^{-1}\big)^2 x}{x^2+1}\,dx \\ & = \; 3\int_0^\infty\frac{\big(\tan^{-1}x^{-1}\big)^2 x}{x^2+1}\,dx \; = \; 3\left[\tfrac12\big(\tan^{-1}x^{-1}\big)^2\,\ln(x^2+1)\right]_0^\infty + 3\int_0^\infty \frac{\tan^{-1}x^{-1}\, \ln(x^2+1)}{x^2+1}\,dx \\ & = \; 3\int_0^\infty \frac{\tan^{-1}x^{-1}\, \ln(x^2+1)}{x^2+1}\,dx \; = \; 6\int_0^{\frac12\pi}\theta\ln(\mathrm{cosec}\,\theta)\,d\theta \\ & = \; -6\int_0^{\frac12\pi}\theta\ln(\sin\theta)\,d\theta \end{aligned} Using Euler's integral 0 1 2 π θ ln ( sin θ ) d θ = 7 16 ζ ( 3 ) 1 8 π 2 ln 2 \int_0^{\frac12\pi}\theta \ln(\sin\theta)\,d\theta \; = \; \tfrac{7}{16}\zeta(3) - \tfrac18\pi^2\ln2 we obtain 0 ( 1 2 π tan 1 x ) 3 d x = 3 4 π 2 ln 2 21 8 ζ ( 3 ) = 3 8 ( π 2 ln 4 7 ζ ( 3 ) ) \int_0^\infty \left(\tfrac12\pi - \tan^{-1}x\right)^3\,dx \; = \; \tfrac34\pi^2\ln2 - \tfrac{21}{8}\zeta(3) \; = \; \tfrac38\big(\pi^2\ln4 - 7\zeta(3)\big) making the answer 2 + 4 + 7 + 3 = 16 2+4+7+3=\boxed{16} .

How do u use euler to integrae xln(sinx)

D S - 3 years, 6 months ago

Log in to reply

Euler evaluated the integral - it is a standard result! Methods for evaluating it include differentiating incomplete Beta functions.

Mark Hennings - 3 years, 6 months ago

Or else you can use Fourier series of ln ( sin x ) = ln 2 k = 1 ( 1 ) k cos ( 2 k x ) k \displaystyle \ln(\sin x)=-\ln 2 -\sum_{k=1}^{\infty} (-1)^k\frac {\cos (2kx)}{k}

Rohan Shinde - 2 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...