∫ 0 ∞ ( 2 π − arctan ( x ) ) 3 d x = 8 3 ( π a lo g ( b ) − c ζ ( d ) )
The equation above holds true for positive integers a , b , c , and d . Find a + b + c + d .
Notation: ζ ( ⋅ ) denotes the Riemann zeta function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
How do u use euler to integrae xln(sinx)
Log in to reply
Euler evaluated the integral - it is a standard result! Methods for evaluating it include differentiating incomplete Beta functions.
Or else you can use Fourier series of ln ( sin x ) = − ln 2 − k = 1 ∑ ∞ ( − 1 ) k k cos ( 2 k x )
Problem Loading...
Note Loading...
Set Loading...
Integating by parts twice, and then putting x = cot θ , we obtain ∫ 0 ∞ ( 2 1 π − tan − 1 x ) 3 d x = ∫ 0 ∞ ( tan − 1 x − 1 ) 3 d x = [ x ( tan − 1 x − 1 ) 3 ] 0 ∞ + 3 ∫ 0 ∞ x 2 + 1 ( tan − 1 x − 1 ) 2 x d x = 3 ∫ 0 ∞ x 2 + 1 ( tan − 1 x − 1 ) 2 x d x = 3 [ 2 1 ( tan − 1 x − 1 ) 2 ln ( x 2 + 1 ) ] 0 ∞ + 3 ∫ 0 ∞ x 2 + 1 tan − 1 x − 1 ln ( x 2 + 1 ) d x = 3 ∫ 0 ∞ x 2 + 1 tan − 1 x − 1 ln ( x 2 + 1 ) d x = 6 ∫ 0 2 1 π θ ln ( c o s e c θ ) d θ = − 6 ∫ 0 2 1 π θ ln ( sin θ ) d θ Using Euler's integral ∫ 0 2 1 π θ ln ( sin θ ) d θ = 1 6 7 ζ ( 3 ) − 8 1 π 2 ln 2 we obtain ∫ 0 ∞ ( 2 1 π − tan − 1 x ) 3 d x = 4 3 π 2 ln 2 − 8 2 1 ζ ( 3 ) = 8 3 ( π 2 ln 4 − 7 ζ ( 3 ) ) making the answer 2 + 4 + 7 + 3 = 1 6 .