Integral Stuff 5

Calculus Level 4

1 e 1 / x x 16 d x = a + b e \large \int_1^{\infty} \frac{e^{1/x}}{x^{16}} \, dx=a+be

Find a + b a+b .


The answer is -55107190151.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 23, 2017

I = 1 e 1 x x 16 d x Let u = 1 x d u = 1 x 2 d x = 0 1 u 14 e u d u By integration by parts. = u 14 e u 14 u 13 e u + 14 13 u 12 e u + + 14 ! 2 ! u 2 e u 14 ! 1 ! u e u + 14 ! 0 ! e u 0 1 = e n = 0 14 ( 1 ) n 14 ! n ! 14 ! = 32071101049 e 87178291200 \begin{aligned} I & = \int_1^\infty \frac {e^\frac 1x}{x^{16}}\ dx & \small \color{#3D99F6} \text{Let } u = \frac 1x \implies du = - \frac 1{x^2} \ dx \\ & = \int_0^1 u^{14}e^u \ du & \small \color{#3D99F6} \text{By integration by parts.} \\ & = u^{14}e^u - 14 u^{13}e^u + 14\cdot 13 u^{12}e^u + \cdots + \frac {14!}{2!} u^2e^u - \frac {14!}{1!} u e^u + \frac {14!}{0!} e^u \bigg|_0^1 \\ & = e\sum_{n=0}^{14} \frac {(-1)^n14!}{n!} - 14! \\ & = 32071101049e - 87178291200 \end{aligned}

a + b = 87178291200 + 32071101049 = 55107190151 \implies a+b = - 87178291200 + 32071101049 = \boxed{-55107190151}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...