∫ 1 ∞ ( − φ n 1 3 + φ 2 n 2 3 − φ 3 n 3 3 + φ 4 n 4 3 − φ 5 n 5 3 + ⋯ ) d n = lo g φ a b − ( a + b )
If the equation above holds true for integers a and b with b being square-free, find b − a .
Notation: φ = 2 1 + 5 denotes the golden ratio .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
well done.
Log in to reply
Glad that you like it. I have solved your previous one involving gamma function
Problem Loading...
Note Loading...
Set Loading...
I = ∫ 1 ∞ k = 1 ∑ ∞ φ k n ( − 1 ) k k 3 d n = k = 1 ∑ ∞ φ k lo g φ ( − 1 ) k k 2 = lo g φ x ⋅ d x d ( x ⋅ d x d ⋅ 1 + x 1 ) = lo g φ x ⋅ d x d ( − ( x + 1 ) 2 x ) = lo g φ x ⋅ ( x + 1 ) 3 x − 1 = lo g φ φ − 1 ⋅ ( φ − 1 + 1 ) 3 φ − 1 − 1 = lo g φ 1 ⋅ φ 5 1 − φ = − φ 6 lo g φ 1 = − lo g φ ( 8 φ + 5 ) 1 = − lo g φ ( 8 5 + 1 8 ) 2 = lo g φ 4 5 − 9 Replace φ 1 with x . Replace x with φ 1 . Note that φ 1 = φ − 1 and φ n = F n φ − F n − 1
Therefore b − a = 5 − 4 = 1 .