Integral thing ... 1

Calculus Level 3

π 2 π 2 1 3 + sin ( x ) d x = π a \large \int_{-\frac{\pi }{2}}^{\frac{\pi }{2}} \frac{1}{3+\sin (x)} \, dx=\frac{\pi }{\sqrt{a}}

Submit a a .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 23, 2017

I = π 2 π 2 d x 3 + sin x Using t = tan x 2 d t = 1 2 sec 2 x 2 = 1 1 2 d t 3 t 2 + 2 t + 3 sin x = 2 t 1 + t 2 = 3 4 1 1 d t 9 8 ( t + 1 3 ) 2 + 1 Let u = 3 8 ( t + 1 3 ) = 1 2 1 2 2 d u u 2 + 1 = 1 2 tan 1 u 1 2 2 = 1 2 ( tan 1 2 + tan 1 1 2 ) = 1 2 tan 1 ( 2 + 1 2 1 2 × 1 2 ) = 1 2 × π 2 = π 8 \begin{aligned} I & = \int_{-\frac \pi 2}^\frac \pi 2 \frac {dx}{3+\sin x} & \small \color{#3D99F6} \text{Using }t = \tan \frac x2 \implies dt = \frac 12 \sec^2 \frac x2 \\ & = \int_{-1}^1 \frac {2\ dt}{3t^2+2t+3} & \small \color{#3D99F6} \implies \sin x = \frac {2t}{1+t^2} \\ & = \frac 34 \int_{-1}^1 \frac {dt}{\frac 98\left(t+\frac 13\right)^2 +1} & \small \color{#3D99F6} \text{Let } u = \frac 3{\sqrt 8} \left(t+\frac 13\right) \\ & = \frac 1{\sqrt 2} \int_{-\frac 1{\sqrt 2}}^{\sqrt 2} \frac {du}{u^2+1} \\ & = \frac 1{\sqrt 2} \tan^{-1} u\ \bigg|_{-\frac 1{\sqrt 2}}^{\sqrt 2} \\ & = \frac 1{\sqrt 2} \left(\tan^{-1} \sqrt 2 + \tan^{-1} \frac 1{\sqrt 2}\right) \\ & = \frac 1{\sqrt 2} \tan^{-1} \left(\frac {\sqrt 2 + \frac 1{\sqrt 2}}{1- \sqrt 2 \times \frac 1{\sqrt 2}}\right) \\ & = \frac 1{\sqrt 2} \times \frac \pi 2 = \frac \pi {\sqrt 8} \end{aligned}

a = 8 \implies a = \boxed{8}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...