Integral Thing 2

Calculus Level 4

0 ( π 2 arctan ( x ) ) 2 d x = π a ln ( b ) \large \int_0^\infty \left(\frac{\pi }{2}-\arctan (x)\right)^{2} \, dx = {\pi}^a\ln(b)

The equation above holds true for positive integers a a and b b . Find a + b a+b .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 18, 2017

I = 0 ( π 2 arctan x ) 2 d x See Note 1. = 0 ( arctan 1 x ) 2 d x Let u = arctan 1 x See Note 2. = 0 π 2 u 2 csc 2 u d u By integration by parts = u 2 cot u 0 π 2 + 2 0 π 2 u cot u d u See Note 3 and 4. = 0 + 2 u ln ( sin u ) 0 π 2 2 0 π 2 ln ( sin u ) d u = 0 2 0 π 2 ln ( sin u ) d u 0 π 2 ln ( sin u ) d u = I 2 = 0 π 2 ( ln ( sin u ) + ln ( cos u ) ) d u By identity: a b f ( x ) d x = a b f ( a + b x ) d x = 0 π 2 ln ( sin 2 u 2 ) d u = 0 π 2 ln 2 d u 0 π 2 ln ( sin 2 u ) d u Let v = 2 u d v = 2 d u = u ln 2 0 π 2 1 2 0 π ln ( sin v ) d v Since sin θ is symmetrical about π 2 = π ln 2 2 0 π 2 ln ( sin v ) d v Note that 0 π 2 ln ( sin v ) d v = I 2 = π ln 2 2 + I 2 I 2 = π ln 2 2 I = π ln 2 \begin{aligned} I & = \int_0^\infty \left({\color{#3D99F6}\frac \pi 2 - \arctan x}\right)^2 dx & \small \color{#3D99F6} \text{See Note 1.} \\ & = \int_0^\infty \left({\color{#3D99F6}\arctan \frac 1x}\right)^2 dx & \small \color{#3D99F6} \text{Let }u=\arctan \frac 1x \text{ See Note 2.} \\ & = \int_0^\frac \pi 2 u^2 \csc^2 u \ du & \small \color{#3D99F6} \text{By integration by parts} \\ & = {\color{#D61F06}-u^2\cot u \bigg|_0^\frac \pi 2} + 2 \int_0^\frac \pi 2 u \cot u \ du & \small \color{#D61F06} \text{See Note 3 and 4.} \\ & = {\color{#D61F06}0} + {\color{#D61F06}2u \ln(\sin u) \bigg|_0^\frac \pi 2} - 2 \int_0^\frac \pi 2 \ln(\sin u) \ du \\ & = {\color{#D61F06}0} -\color{#3D99F6} 2 \int_0^\frac \pi 2 \ln(\sin u) \ du & \small \color{#3D99F6} \implies \int_0^\frac \pi 2 \ln(\sin u) \ du = - \frac I2 \\ & = \color{#3D99F6} \int_0^\frac \pi 2 \left(\ln(\sin u) + \ln(\cos u)\right) du & \small \color{#3D99F6} \text{By identity: }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = - \int_0^\frac \pi 2 \ln \left(\frac {\sin 2u}2\right) du \\ & = \int_0^\frac \pi 2 \ln 2 \ du - \int_0^\frac \pi 2 \ln (\sin 2u)\ du & \small \color{#3D99F6} \text{Let }v =2u \implies dv = 2du \\ & = u \ln 2 \bigg|_0^\frac \pi 2 - \frac 12 \int_0^\pi \ln (\sin v)\ dv & \small \color{#3D99F6} \text{Since }\sin \theta \text{ is symmetrical about }\frac \pi 2 \\ & = \frac {\pi \ln 2}2 - \color{#3D99F6} \int_0^\frac \pi 2 \ln (\sin v)\ dv & \small \color{#3D99F6} \text{Note that } \int_0^\frac \pi 2 \ln(\sin v) \ dv = - \frac I2 \\ & = \frac {\pi \ln 2}2 + \color{#3D99F6} \frac I2 \\ \implies \frac I2 & = \frac {\pi \ln 2}2 \\ I & = \pi \ln 2 \end{aligned}

a + b = 1 + 2 = 3 \implies a+b = 1+2 = \boxed{3}


Note 1: Let θ = arctan x \theta = \arctan x , then tan ( π 2 arctan x ) = tan ( π 2 θ ) = cot θ = 1 tan θ = 1 x \tan \left(\dfrac \pi 2 - \arctan x \right) = \tan \left(\dfrac \pi 2 - \theta \right) = \cot \theta = \dfrac 1{\tan \theta} = \dfrac 1x . This implies that π 2 arctan x = arctan 1 x \dfrac \pi 2 - \arctan x = \arctan \dfrac 1x .

Note 2: u = arctan 1 x u = \arctan \dfrac 1x , tan u = 1 x \implies \tan u = \dfrac 1x , sec 2 u d u = 1 x 2 d x \implies \sec^2 u \ du = - \dfrac 1{x^2} dx , d x = 1 + tan 2 u tan 2 u d u = csc 2 u \implies dx = - \dfrac {1+\tan^2 u}{\tan^2 u} du = -\csc^2 u , 0 ( arctan 1 x ) 2 d x = π 2 0 u 2 csc 2 u d u = 0 π 2 u 2 csc 2 u d u \implies \displaystyle \int_0^\infty \left(\arctan \frac 1x\right)^2 dx = \int_\frac \pi 2^0 -u^2\csc^2 u \ du = \int^\frac \pi 2_0 u^2\csc^2 u \ du

Note 3: u 2 cot u 0 π 2 = π 2 cot π 2 4 lim u 0 u sin u 1 × u cos u = 0 1 ( 0 ) ( 1 ) = 0 \displaystyle u^2\cot u \bigg|_0^\frac \pi 2 = \frac {\pi^2 \cot \frac \pi 2}4 - \lim_{u \to 0} \cancel{\frac u{\sin u}}^1\times u\cos u = 0 - 1(0)(1) = 0

Note 4:

u ln ( sin u ) 0 π 2 = π 2 ln ( sin π 2 ) lim u 0 ln ( sin u ) 1 u A / case, L’H o ˆ pital’s rule applies. = 0 lim u 0 cos u sin u 1 u 2 Differentiate up and down w.r.t. x = lim u 0 u sin u 1 × u cos u = 0 \begin{aligned} u \ln(\sin u) \bigg|_0^\frac \pi 2 & = \frac \pi 2 \ln\left(\sin \frac \pi 2\right) - \color{#3D99F6} \lim_{u \to 0} \frac {\ln(\sin u)}{\frac 1u} & \small \color{#3D99F6} \text{A } \infty/\infty \text{ case, L'Hôpital's rule applies.} \\ & = 0 - \color{#3D99F6} \lim_{u \to 0} \frac {\frac {\cos u}{\sin u}}{-\frac 1{u^2}} & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }x \\ & = \lim_{u \to 0} \cancel{\frac u{\sin u}}^1 \times u\cos u = 0 \end{aligned}

I've been racking my brain for ages over this problem! Great solution! Well done!

Rohan Kapur - 3 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...